Publications by authors named "YiLong Yao"

Purpose: To elucidate the genetic basis of primary angle-closure glaucoma (PACG) by identifying pathogenic tissue and critical tissue-specific variants.

Methods: The correlations among PACG susceptibility, axial length (AL), and anterior chamber depth (ACD) were evaluated using meta-analyses. Propensity score matching was utilized on 2161 participants from the Handan Eye Study to determine the risk factors independent of ACD and AL for PACG.

View Article and Find Full Text PDF

Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design.

View Article and Find Full Text PDF

Understanding the differences in ubiquitination-modified proteins between Duroc pigs and Tibetan fragrant pigs is crucial for comprehending the growth and development of their skeletal muscles. In this study, skeletal muscle samples from 30-day-old Duroc pigs and Tibetan fragrant pigs were collected. Using ubiquitination 4D-Label free quantitative proteomics, we analyzed and identified ubiquitination-modified peptides, screening out 109 differentially expressed ubiquitination-modified peptides.

View Article and Find Full Text PDF
Article Synopsis
  • - Cold stress is a significant problem for rice crops, causing yield losses and making it crucial to discover natural variants that can help breed cold-resistant rice.
  • - Researchers identified a gene, OsSRO1c, that enhances cold tolerance in rice during key growth stages by working with another gene, OsDREB2B, to activate cold-response genes.
  • - By integrating a beneficial version of OsSRO1c into sensitive rice varieties, the study suggests a new approach for improving cold resistance and breeding strategies in rice.
View Article and Find Full Text PDF

Hydrogel microspheres are biocompatible materials widely used in biological and medical fields. Emulsification and stirring are the commonly used methods to prepare hydrogels. However, the size distribution is considerably wide, the monodispersity and the mechanical intensity are poor, and the stable operation conditions are comparatively narrow to meet some sophisticated applications.

View Article and Find Full Text PDF

Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many quantitative trait loci (QTLs) and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that was associated with both grain and flag leaf width.

View Article and Find Full Text PDF

Compared with the conventional emulsification method, droplets generated within microfluidic devices exhibit distinct advantages such as precise control of fluids, exceptional monodispersity, uniform morphology, flexible manipulation, and narrow size distribution. These inherent benefits, including intrinsic safety, excellent heat and mass transfer capabilities, and large surface-to-volume ratio, have led to the widespread applications of droplet-based microfluidics across diverse fields, encompassing chemical engineering, particle synthesis, biological detection, diagnostics, emulsion preparation, and pharmaceuticals. However, despite its promising potential for versatile applications, the practical utilization of this technology in commercial and industrial is extremely limited to the inherently low production rates achievable within a single microchannel.

View Article and Find Full Text PDF

Skeletal muscle plays critical roles in providing a protein source and contributing to meat production. It is well known that microRNAs (miRNAs) exert important effects on various biological processes in muscle, including cell fate determination, muscle fiber morphology, and structure development. However, the role of miRNA in skeletal muscle development remains incompletely understood.

View Article and Find Full Text PDF

Drought stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of drought resistance in rice. Here, through a genome-wide association study, we reveal that natural variations in DROUGHT RESISTANCE GENE 9 (DRG9), encoding a double-stranded RNA (dsRNA) binding protein, contribute to drought resistance. Under drought stress, DRG9 condenses into stress granules (SGs) through liquid-liquid phase separation via a crucial α-helix.

View Article and Find Full Text PDF

How selectively increase blood-tumor barrier (BTB) permeability is crucial to enhance the delivery of chemotherapeutic agents to brain tumor tissues. In this study, we established in vitro models of the blood-brain barrier (BBB) and BTB using endothelial cells (ECs) co-cultured with human astrocytes (AECs) and glioma cells (GECs), respectively. The findings revealed high expressions of the RNA-binding protein FXR1 and SNORD63 in GECs, where FXR1 was found to bind and stabilize SNORD63.

View Article and Find Full Text PDF

Skeletal muscle development remarkably affects meat production and growth rate, regulated by complex regulatory mechanisms in pigs. Specific AT sequence-binding protein 2 () is a classic transcription factor and chromatin organizer, which holds a profound effect in the regulation of chromatin remodeling. However, the regulation role of concerning skeletal muscle cell fate through chromatin remodeling in pigs remains largely unknown.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor. The transfer RNA-derived fragments (tRFs) are a new group of small noncoding RNAs, which are dysregulated in many cancers. Until now, the expression and function of tRFs in glioma remain unknown.

View Article and Find Full Text PDF

Rice ratooning, the fast outgrowth of dormant buds on stubble, is an important cropping practice in rice production. However, the low ratooning ability (RA) of most rice varieties restricts the application of this cost-efficient system, and the genetic basis of RA remains unknown. In this study, we dissected the genetic architecture of RA by a genome-wide association study in a natural rice population.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most malignant brain tumor with rapid angiogenesis. How to inhibit GBM angiogenesis is a key problem to be solved. To explore the targets of inhibiting GBM angiogenesis, this study confirmed that the expression of circMTA1 (hsa_circ_0033614) was significantly upregulated in human brain microvascular endothelial cells exposed to glioma cell-conditioned medium (GECs).

View Article and Find Full Text PDF

Objectives: DEPDC5 is a common causative gene in familial focal epilepsy with or without malformations of cortical development. Its pathogenic variants also confer a significantly higher risk for sudden unexpected death in epilepsy (SUDEP), providing opportunities to investigate the pathophysiology intersecting neurodevelopment, epilepsy, and cardiorespiratory function. There is an urgent need to gain a mechanistic understanding of DEPDC5-related epilepsy and SUDEP, identify biomarkers for patients at high risk, and develop preventive interventions.

View Article and Find Full Text PDF

There are significant differences in meat production, growth rate and other traits between Western commercial pigs and Chinese local pigs. Comparative transcriptome approaches have identified many coding and non-coding candidate genes associated various traits. However, the expression and function of circular RNAs (circRNAs) in different pig tissues are largely unknown.

View Article and Find Full Text PDF

NARROW LEAF 1 (NAL1) is a breeding-valuable pleiotropic gene that affects multiple agronomic traits in rice, although the molecular mechanism is largely unclear. Here, we report that NAL1 is a serine protease and displays a novel hexameric structure consisting of two ATP-mediated doughnut-shaped trimeric complexes. Moreover, we identified TOPLESS-related corepressor OsTPR2 involved in multiple growth and development processes as the substrate of NAL1.

View Article and Find Full Text PDF

Skeletal muscle, as a regenerative organization, plays a vital role in physiological characteristics and homeostasis. However, the regulation mechanism of skeletal muscle regeneration is not entirely clear. miRNAs, as one of the regulatory factors, exert profound effects on regulating skeletal muscle regeneration and myogenesis.

View Article and Find Full Text PDF

Increased ventilation is a critical process that occurs when the body responds to a hypoxic environment. Sighs are long, deep breaths that prevent alveolar collapse, and their frequency is significantly increased by hypoxia. In this study, we first show that sighing is induced by hypoxia as a function of increased hypoxic severity and that hypoxia-induced sighing is capable of increasing the oxygen saturation in a mouse model.

View Article and Find Full Text PDF

Yak is the livestock on which people live in plateau areas, but its fecundity is low. Follicular development plays a decisive role in yak reproductive performance. As an important regulatory factor, the expression of long non-coding RNA (lncRNAs) in yak follicular development and its regulatory mechanism remains unclear.

View Article and Find Full Text PDF

Background: The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics.

View Article and Find Full Text PDF

Bone morphogenetic protein 15 (BMP15) regulates the growth and development of follicles. In particular, the long non-coding RNA H19 plays an important role in mammalian reproduction. However, the function and regulatory mechanism of the interaction of BMP15 with H19 in yak granulosa cell (GC) proliferation, autophagy, and apoptosis are poorly understood.

View Article and Find Full Text PDF