High internal phase emulsion-templated polymer, named polyHIPE, has received widespread attention due to its great potential applications in many fields, such as separation, adsorption, heterogeneous catalysis, and sound absorption. The broad applicability is largely dependent on its adjustable opening structure. However, the question of why polyHIPE has an interconnected pore network structure is still to be discussed.
View Article and Find Full Text PDFMany advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polymerization of a water-in-oil-in-water system.
View Article and Find Full Text PDFCities are natural laboratories for studying the vegetation response to global change due to their own climatic, atmospheric, and biological conditions. However, whether the urban environment promoted vegetation growth is still uncertain. Using the Yangtze River Delta (YRD), an economic powerhouse of modern China, as a case study, this paper investigated the impact of urban environment on vegetation growth at three scales: cities, sub-cities (rural-urban gradient) -pixels.
View Article and Find Full Text PDFWe report generation of broadband supercontinuum (SC) by noise-like pulses (NLPs) with a central wavelength of 1070 nm propagating through a long piece of standard single-mode fibers (~100 meters) in normal dispersion region far from the zero-dispersion point. Theoretical simulations indicate that the physical mechanism of SC generation is due to nonlinear effects in fibers. The cascaded Raman scattering is responsible for significant spectral broadening in the longer wavelength regions whereas the Kerr effect results in smoothing of SC generated spectrum.
View Article and Find Full Text PDF