The loss-of-function mutation of AT-rich interactive domain 1A (ARID1A) frequently occurs in various types of cancer, making it a promising therapeutic target. In the present study, we performed a screening of an FDA-approved drug library in ARID1A isogenic colorectal cancer (CRC) cells and discovered that ARID1A loss sensitizes CRC cells to floxuridine (FUDR), an antineoplastic agent used for treating hepatic metastases from CRC, both in vivo and in vitro. As a pyrimidine analogue, FUDR induces DNA damage by inhibiting thymidylate synthase (TS) activity.
View Article and Find Full Text PDFARID1A, a component of the SWI/SNF chromatin-remodeling complex, is frequently mutated in various cancer types and has emerged as a potential therapeutic target. In this study, we observed that ARID1A-deficient colorectal cancer (CRC) cells showed synthetic lethal effects with a p53 activator, RITA (reactivating p53 and inducing tumor apoptosis). RITA, an inhibitor of the p53-MDM2 interaction, exhibits increased sensitivity in ARID1A-deficient cells compared to ARID1A wild-type cells.
View Article and Find Full Text PDFUnlabelled: Cooperation between primary malignant cells and stromal cells can mediate the establishment of lung metastatic niches. Here, we characterized the landscape of cell populations in the tumor microenvironment in treatment-naïve osteosarcoma using single-cell RNA sequencing and identified a stem cell-like cluster with tumor cell-initiating properties and prometastatic traits. CXCL14 was specifically enriched in the stem cell-like cluster and was also significantly upregulated in lung metastases compared with primary tumors.
View Article and Find Full Text PDFGrowing evidence indicates a link between retinoic acid (RA) metabolism and sarcoma progression or immunity in laboratory studies. However, a comprehensive analysis of RA abnormality in the sarcoma population is still lacking. Herein, we systematically analyzed the molecular features of 19 retinoic acid metabolism-related enzymes and sarcoma patients' clinical information based on TCGA/TARGET/GSE datasets.
View Article and Find Full Text PDFOsteosarcoma (OSA) is the most common bone malignancy and displays high heterogeneity of molecular phenotypes. This study aimed to characterize the molecular features of OSA by developing a classification system based on the gene expression profile of the tumor microenvironment. Integrative analysis was performed using specimens and clinical information for OSA patients from the TARGET program.
View Article and Find Full Text PDFTumor microenvironments are strongly related to tumor development, and immune-infiltrating cells and immune-related molecules are potential prognostic markers. However, the shortcomings of traditional measurement methods limit the accurate evaluation of various components in tumor microenvironments. With the rapid advancement of Next-Generation RNA Sequencing technology, dedicated and in-depth analyses of immune filtration within the tumor microenvironment has been achieved.
View Article and Find Full Text PDFOsteosarcoma (OSA), the most common primary bone malignancy in children and adolescents, is prone to metastases and unfavorable prognosis. Owing to its strong genomic heterogeneity, traditional chemotherapy, or targeted immunotherapy has not effectively improved the related overall survival for decades. Since the landscape of the OSA tumor immune microenvironment is scarcely known, despite it playing a crucial role in predicting clinical outcomes and therapeutic efficacies, we aimed to elucidate its molecular characteristics.
View Article and Find Full Text PDFTumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown.
View Article and Find Full Text PDFThe single Nrf1 gene has capability to be differentially transcripted alongside with alternative mRNA-splicing and subsequent translation through different initiation signals so as to yield distinct lengths of polypeptide isoforms. Amongst them, three of the most representatives are Nrf1α, Nrf1β and Nrf1γ, but the putative specific contribution of each isoform to regulating ARE-driven target genes remains unknown. To address this, we have herein established three cell lines on the base of the Flp-In T-REx system, which are allowed for the tetracycline-inducibly stable expression of Nrf1α, Nrf1β and Nrf1γ.
View Article and Find Full Text PDFObjective: To study the effects of different substrate stiffness on human hepatocytes using RNA sequencing (RNA-Seq) technology. The stiffness was corresponding to physiology and pathology stiffness of liver tissues.
Results: With the aid of RNA-Seq technology, our study characterizes the transcriptome of hepatocytes cultured on soft, moderate, stiff and plastic substrates.
MicroRNAs (miRNAs) act as epigenetic markers and regulate the expression of their target genes, including those characterized as regulators in autoimmune diseases. Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. The potential roles of miRNA-regulated genes in RA pathogenesis have greatly aroused the interest of clinicians and researchers in recent years.
View Article and Find Full Text PDFHepatitis B virus surface antigen (HBsAg) is an important risk factor for hepatocellular carcinoma (HCC) and is downregulated during hepatocarcinogenesis. MicroRNAs (miRNAs) are frequently deregulated in HCC tissues. However, whether the deregulation of certain miRNAs in HCC has an impact on HBsAg expression remains unclear.
View Article and Find Full Text PDFPurpose: To evaluate the relationship between lumican polymorphisms and high myopia in Chinese populations.
Methods: An electronic search was conducted in Pubmed, Embase, Cochrane Library and the China Biological Medicine Database for articles published prior to September 30, 2012. A meta-analysis was performed to assess heterogeneity, combine results and determine publication bias.
Background And Aim: Controlled attenuation parameter (CAP) is a novel ultrasound-based elastography method for detection of steatosis severity. This meta-analysis aimed to assess the performance of CAP.
Methods: PubMed, the Cochrane Library, and the Web of Knowledge were searched to find studies, published in English, relating to accuracy evaluations of CAP for detecting stage 1 (S1), stage 2 (S2), or stage 3 (S3) hepatic steatosis which was diagnosed by liver biopsy.
Objectives: To perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses.
Methods: PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves.
Hepatitis B surface antigen (HBsAg) seropositivity is an important risk factor for hepatocellular carcinoma (HCC), and HBsAg-transgenic mice have been reported to spontaneously develop HCC. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, we found that HBsAg overexpression in HepG2 cells led to upregulation of 133 and downregulation of 9 microRNAs (miRNAs).
View Article and Find Full Text PDFWe have shown that Dicer processes 7SL RNA into different fragments ranging from ∼20 to more than 200 nucleotides. Here we addressed the molecular functions of these 7SL RNA fragments and found that some of them functioned as dominant-negative regulators of the full-length 7SL RNA, interfering with signal recognition particle (SRP) complex formation. Transfection of these 7SL RNA fragments inhibited the expression of cell surface glycoproteins, the targeting of a reporter protein to the endoplasmic reticulum, and the secretion of secreted alkaline phosphatase.
View Article and Find Full Text PDFIt has been reported that decreased Dicer expression leads to Alu RNAs accumulation in human retinal pigmented epithelium cells, and Dicer may process the endogenous SINE/B1 RNAs (the rodent equivalent of the primate Alu RNAs) into small interfering RNAs (siRNAs). In this study, we aimed to address whether Dicer can process Alu RNAs and their common ancestor, 7SL RNA. Using Solexa sequencing technology, we showed that Alu-derived small RNAs accounted for 0.
View Article and Find Full Text PDFBackground: microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent disease research showed the exposure to some environmental chemicals (ECs) can regulate the expression patterns of miRNAs, which raises the intriguing question of how miRNAs and their targets cope with the exposure to ECs throughout the genome.
Results: In this study, we comprehensively analyzed the properties of genes regulated by ECs (EC-genes) and found miRNA targets were significantly enriched among the EC-genes.