Metal-organic frameworks (MOFs) are porous crystalline materials composed of metallic nodes and organic ligands, demonstrating increasing potential in water harvesting in arid and semiarid regions. This study presents a nonalkaline, water-based, and scalable synthesis strategy designed to adjust the water sorption properties of aluminum-based MOFs (Al-MOFs), specifically, AlFum and MOF-303, by modifying the basicity of the metal source, polymeric hydroxy-aluminum, as an alternative. Characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA), confirmed the successful synthesis of Al-MOFs.
View Article and Find Full Text PDFImproving the charge separation, charge transfer, and effective utilization is crucial in a photocatalysis system. Herein, we prepared a novel direct Z-scheme NH-MIL-125(Ti)@FeOCl (Ti-MOF@FeOCl) composite photocatalyst through a simple method. The prepared composite catalyst was utilized in the photo-Fenton degradation of Rhodamine B (RhB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFTreatment of heavy metal pollution in complexed states within water bodies presents significant challenges in the current water treatment field. Adsorption as a means for the removal of heavy metals is characterized by its simplicity of operation, stable effluent, and minimal equipment requirements. Metal-organic frameworks (MOFs) as adsorbents hold significant interest for applications in water treatment.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO reduction reaction (PCORR). This study presents a comprehensive examination of the advancements in MOFs-based PCORR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field.
View Article and Find Full Text PDFThe toxicity for the human body of non-steroidal anti-inflammatory drugs (NSAIDs) overdoses is a consequence of their low water solubility, high doses, and facile accessibility to the population. New drug delivery systems (DDS) are necessary to overcome the bioavailability and toxicity related to NSAIDs. In this context, UiO-66(Zr) metal-organic framework (MOF) shows high porosity, stability, and load capacity, thus being a promising DDS.
View Article and Find Full Text PDFHerein, Cellulose-templated ZnCuO/AgO nanocomposites were prepared using biological renewable cellulose extracted from water hyacinth (). Cellulose-templated Cu-doped ZnO catalysts with different amounts of Cu as the dopants (1, 2, 3, and 4%) were prepared and denoted CZ-1, CZ-2, CZ-3, and CZ-4, respectively, for simplicity. The prepared catalysts were tested for the degradation of methylene blue (MB), and 2% Cu-doped ZnO (CZ-2) showed the best catalytic performance (82%), while the pure ZnO, CZ-1, CZ-3, and CZ-4 catalysts exhibited MB dye degradation efficiencies of 54, 63, 65, and 60%, respectively.
View Article and Find Full Text PDFEffective techniques for eliminating antibiotics from water environments are in high demand. The peracetic acid (PAA)-based advanced oxidation process has recently drawn increasing attention for its effective antibiotic degrading capability. However, current applications of PAA-based techniques are limited and tend to have unsatisfactory performance.
View Article and Find Full Text PDFDifferent organic compounds in aquatic bodies have been recognized as an emerging issue in Environmental Chemistry. The gamma irradiation technique, as one of the advanced oxidation techniques, has been widely investigated in past decades as a technique for the degradation of organic molecules, such as dyes, pesticides, and pharmaceuticals, which show high persistence to degradation. This review gives an overview of what has been achieved so far using gamma irradiation for different organic compound degradations giving an explanation of the mechanisms of degradations as well as the corresponding limitations and drawbacks, and the answer to why this technique has not yet widely come to life.
View Article and Find Full Text PDFThe global concern over water pollution caused by organic pollutants such as methylene blue (MB) and other dyes has reached a critical level. Herein, the Allium cepa L. peel extract was utilized to fabricate copper oxide (CuO) nanoparticles.
View Article and Find Full Text PDFPorous materials such as metal-organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP).
View Article and Find Full Text PDFThe plant extract mediated green synthesis of nanomaterials has attracts enormous interest due to its cost-effectiveness, greener, and environmentally friendly. It is also considered as an alternative and facile method in which the phytochemicals can be used as a natural capping and reducing agents and helped to produce nanomaterials with high surface area, different sizes, and shapes. One of the materials fabricated using green methods is zinc oxide (ZnO) semiconductor due to its enormous applications in different field areas.
View Article and Find Full Text PDFMetal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores.
View Article and Find Full Text PDFBackground: This study is aimed at identifying the important biomarkers associated with bone metastasis (BM) in breast cancer (BRCA).
Methods: The GSE175692 dataset was used to detect significant differential expressed genes (DEGs) between BRCA samples with or without BM, and DEG-related pathways were then explored. Further, we constructed the protein-protein interaction (PPI) network on GEGs and filtered 5 vital nodes.
Zirconium-based metal-organic framework materials (Zr-MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of "Green Chemistry", considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr-MOFs over the past decade.
View Article and Find Full Text PDFRecently, reactive iron species (RFeS) have shown great potential for the selective degradation of emerging organic contaminants (EOCs). However, the rapid generation of RFeS for the selective and efficient degradation of EOCs over a wide pH range is still challenging. Herein, we constructed FeN structures on a carbon nanotube (CNT) to obtain single-atom catalysts (Fe-N-CNT) to generate RFeS in the presence of peroxymonosulfate (PMS).
View Article and Find Full Text PDFEnhanced degradation of organic dye was achieved using two different kinds of waste materials: waste tire granules and spent sealed radioactive sources. Waste tire granules were used as raw material for the production of waste tire char (WTC), which was further utilized as an adsorbent matrix for synergetic adsorption/irradiation degradation of organic dye. The spent radioactive sources were radiographic sealed sources that originate from the industry which generate the high energy radiation.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) with high porosity have received much attention as promising materials for many applications owing to their unique properties. However, to date, most of the reported MOFs have microporous structures, which slow down diffusion/mass transfer and limit the accessibility of bulky molecules to its internal surface. Thus, it is crucial to develop an efficient way to create larger pores (mesoporous and/or macroporous) into microporous MOFs to form hierarchical porous metal-organic frameworks (HP-MOFs), which facilitate the diffusion and mass transfer of guest molecules.
View Article and Find Full Text PDFThe plateau pika () is a keystone species in the alpine rangeland ecosystem of the Qinghai-Tibetan Plateau. Most previous studies of habitat selection by plateau pika have been conducted at a local microhabitat scale; however, little is known about the relationship between the distribution of plateau pika and macrohabitat factors at broad spatial scales. Using a presence-only ecological niche model (maximum entropy, Maxent), we predicted the distribution of plateau pika in the Qinghai Lake basin based on a set of environmental and anthropogenic variables at 1-km spatial resolution, and identified key macrohabitat factors that contribute to the predictive performance.
View Article and Find Full Text PDFThe development of a feasible antibiotic detection method is important in water quality analysis. In this study, we developed a metal-organic framework (MOF)-aptamer-3,3',5,5'-tetramethylbenzidine (TMB)-HO-based sensing platform composed of the reaction variable of TMB catalytic oxidation as the label (from colorless to blue) and aptamer as the target recognition element for antibiotic detection. The platform works by calculating the relation between the antibiotic concentration and the resultant decrease in MOF's catalytic activity.
View Article and Find Full Text PDFBackground: Conflict findings of the impact of inhalational anesthetics on postoperative cognitive function are reported. No systematic review has been performed to solve the problem. The aim of the study was to assess the effect of different inhalational anesthetics on postoperative cognitive function in a network meta-analysis.
View Article and Find Full Text PDFIron-containing metal-organic frameworks (MOFs) have gradually emerged as environmentally benign alternatives for reducing the levels of environmental contamination because of their advantages, such as readily obtained raw materials with low cost, nontoxic metal source with good biocompatibility, and distinguished physicochemical features e.g., high porosity, framework flexibility, and semiconductor properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2017
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix.
View Article and Find Full Text PDFWe have developed a novel selection circuit based on carbon source utilization that establishes and sustains growth-production coupling over several generations in a medium with maltose as the sole carbon source. In contrast to traditional antibiotic resistance-based circuits, we first proved that coupling of cell fitness to metabolite production by our circuit was more robust with a much lower escape risk even after many rounds of selection. We then applied the selection circuit to the optimization of L-tryptophan (l-Trp) production.
View Article and Find Full Text PDFBackground: Wiskott-Aldrich syndrome verprolin-homologous (WAVE) 3, a member of the WASP/WAVE family of proteins, plays a critical role in cell motility and acts as an oncogene in some human cancers, but no sufficient information available to illustrate its involvement in ovarian cancer tumorigenesis and progression.
Methods: The expression of WAVE3 in human ovarian cancer and normal tissue was analyzed by immunohistochemistry. WAVE3 gene and protein expression in different human ovarian cancer cell lines was tested by RT-PCR and western blotting.