Publications by authors named "Yi-an Bi"

Background And Objective: Physiologically based pharmacokinetic (PBPK) models are valuable for translating in vitro absorption, distribution, metabolism, and excretion (ADME) data to predict clinical pharmacokinetics, and can enable discovery and early clinical stages of pharmaceutical research. However, in predicting pharmacokinetics of organic anion transporting polypeptide (OATP) 1B substrates based on in vitro transport and metabolism data, PBPK models typically require additional empirical in vitro-to-in vivo scaling factors (ESFs) in order to accurately recapitulate observed clinical profiles. As model simulation is very sensitive to ESFs, a critical evaluation of ESF estimation is prudent.

View Article and Find Full Text PDF
Article Synopsis
  • - Daprodustat is an oral medication recently approved for treating anemia in adults with chronic kidney disease who are on dialysis, and its effectiveness relies heavily on how it's processed in the liver through specific transport proteins.
  • - Studies show that drugs that inhibit these transport proteins, like rifampin, significantly increase daprodustat's levels in the body, suggesting potential drug interactions that could affect its clearance and overall pharmacokinetics.
  • - A pharmacokinetic model was developed to predict how daprodustat interacts with other medications and showed that drugs inhibiting liver enzymes and transporters could lead to significant interactions, making it crucial to monitor these combinations in patients with kidney issues.
View Article and Find Full Text PDF
Article Synopsis
  • OATP1B is crucial for the liver's ability to remove high molecular weight acids and zwitterions; this study investigates its role in the uptake of low molecular weight hypoxia-inducible factor prolyl hydroxylase inhibitors, known as "Dustats."
  • Five specific acid dustats were shown to be transported by OATP1B1/1B3 in lab cells, while a neutral compound (molidustat) was not transported by these transporters.
  • The use of rifampin, an OATP1B inhibitor, significantly affected the uptake and clearance of these acids in both human liver cells and in monkey studies, highlighting the importance of OATP1B in their pharmacokinetics.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates sulfated bile acids (BA-S) as potential biomarkers for the inhibition of the hepatic transporters OATP1B1 and OATP1B3, which are important in drug interactions.
  • It was found that BA-S are predominantly substrates for OATP1B1 and OATP1B3, with minimal uptake by other transporters, and that their uptake can be significantly inhibited by specific inhibitors like rifampicin.
  • The research revealed that GDCA-S is more selective as an OATP1B1 substrate compared to GCDCA-S, with variations in plasma concentrations suggesting potential applications in clinical settings, although further studies are necessary.
View Article and Find Full Text PDF
Article Synopsis
  • Excessive fructose intake leads to serious health issues like obesity and type 2 diabetes, and PF-06835919 is a new drug aimed at reversing these effects, currently in clinical development for treating non-alcoholic steatohepatitis (NASH).
  • The study examined how PF-06835919 is processed in the body, showing that it actively enters liver cells and engages with specific transporters, leading to a detailed understanding of its uptake and metabolism.
  • Results indicated that PF-06835919 has a low clearance rate and is metabolized through several pathways, achieving a higher concentration in the liver compared to other tissues, which supports its potential effectiveness in treating metabolic disorders.
View Article and Find Full Text PDF

Quantitative prediction of drug-drug interactions (DDIs) involving organic anion transporting polypeptide (OATP)1B1/1B3 inhibition is limited by uncertainty in the translatability of experimentally determined in vitro inhibition potency (half-maximal inhibitory concentration (IC )). This study used an OATP1B endogenous biomarker-informed physiologically-based pharmacokinetic (PBPK) modeling approach to predict the effect of inhibitor drugs on the pharmacokinetics (PKs) of OATP1B substrates. Initial static analysis with about 42 inhibitor drugs, using in vitro IC values and unbound liver inlet concentrations (I ), suggested in vivo OATP1B inhibition risk for drugs with R-value (1+ I /IC ) above 1.

View Article and Find Full Text PDF

It is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.

View Article and Find Full Text PDF

Current challenges with the in vitro-in vivo extrapolation (IVIVE) of hepatic uptake clearance involving organic anion-transporting polypeptide (OATP) 1B1/1B3 hinder drug design strategies. Here we evaluated the effect of 100% human plasma on the uptake clearance using transfected human embryonic kidney (HEK) 293 cells and primary human hepatocytes and assessed IVIVE. Apparent unbound uptake clearance (PS) increased significantly ( < 0.

View Article and Find Full Text PDF

Preclinical and clinical data suggest that acetyl-CoA carboxylase (ACC) inhibitors have the potential to rebalance disordered lipid metabolism, leading to improvements in nonalcoholic steatohepatitis (NASH). Consistent with these observations, first-in-human clinical trials with our ACC inhibitor PF-05175157 led to robust reduction of de novo lipogenesis (DNL), albeit with concomitant reductions in platelet count, which were attributed to the inhibition of fatty acid synthesis within bone marrow. Herein, we describe the design, synthesis, and evaluation of carboxylic acid-based ACC inhibitors with organic anion transporting polypeptide (OATP) substrate properties, which facilitated selective distribution of the compounds at the therapeutic site of action (liver) relative to the periphery.

View Article and Find Full Text PDF

Nicotinic acid (NA) and nicotinamide (NAM) are biosynthetic precursors of nicotinamide adenine dinucleotide (NAD) - a physiologically important coenzyme that maintains the redox state of cells. Mechanisms driving their entry into cells are not well understood. Here we evaluated the hepatic uptake mechanism(s) of NA and NAM using transporter-transfected cell systems and primary human hepatocytes.

View Article and Find Full Text PDF

Hepatic uptake transporters [solute carriers (SLCs)], including organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, sodium-dependent taurocholate cotransporting polypeptide (NTCP), and organic anion (OAT2) and organic cation (OCT1) transporters, play a key role in determining the systemic and liver exposure of chemically diverse drugs. Here, we established a phenotyping approach to quantify the contribution of the six SLCs, and passive diffusion, to the overall uptake using plated human hepatocytes (PHHs). First, selective inhibitor conditions were identified by screening about 20 inhibitors across the six SLCs using single-transfected human embryonic kidney 293 cells.

View Article and Find Full Text PDF

PF-04991532 ((S)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl) propanamido) nicotinic acid) is a glucokinase activator designed to achieve hepato-selectivity via organic anion-transporting polypeptides (OATP)s, so as to minimize systemic hypoglycemic effects. This study investigated the effect of OATP1B1/1B3 inhibition and renal impairment on PF-04991532 oral pharmacokinetics. Cyclosporine (600 mg single dose) increased mean area under the plasma curve (AUC) of PF-04991532 by approximately threefold in healthy subjects.

View Article and Find Full Text PDF

We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion-transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP), and talinolol (P-gp) were obtained in cynomolgus monkey-alone or in combination with transporter inhibitors. Single-dose rifampicin (30 mg/kg) significantly ( < 0.

View Article and Find Full Text PDF

This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan, and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV , respectively.

View Article and Find Full Text PDF

Hepatic organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are clinically relevant transporters associated with significant drug-drug interactions (DDIs) and safety concerns. Given that OATP1Bs in cynomolgus monkey share >90% degree of gene and amino acid sequence homology with human orthologs, we evaluated the in vitro-in vivo translation of OATP1B-mediated DDI risk using this preclinical model. In vitro studies using plated cynomolgus monkey hepatocytes showed active uptake K values of 2.

View Article and Find Full Text PDF

Interindividual variability in warfarin dose requirement demands personalized medicine approaches to balance its therapeutic benefits (anticoagulation) and bleeding risk. Cytochrome P450 2C9 ( CYP2C9) genotype-guided warfarin dosing is recommended in the clinic, given the more potent S-warfarin is primarily metabolized by CYP2C9. However, only about 20-30% of interpatient variability in S-warfarin clearance is associated with CYP2C9 genotype.

View Article and Find Full Text PDF

Tolbutamide is primarily metabolized by CYP2C9, and, thus, is frequently applied as a clinical probe substrate for CYP2C9 activity. However, there is a marked discrepancy in the in vitro-in vivo extrapolation of its metabolic clearance, implying a potential for additional clearance mechanisms. The goal of this study was to evaluate the role of hepatic uptake transport in the pharmacokinetics of tolbutamide and to identify the molecular mechanism thereof.

View Article and Find Full Text PDF

Hepatobiliary elimination can be a major clearance pathway dictating the pharmacokinetics of drugs. Here, we first compared the dose eliminated in bile in preclinical species (monkey, dog, and rat) with that in human and further evaluated single-species scaling (SSS) to predict human hepatobiliary clearance. Six compounds dosed in bile duct-cannulated (BDC) monkeys showed biliary excretion comparable to human; and the SSS of hepatobiliary clearance with plasma fraction unbound correction yielded reasonable predictions (within 3-fold).

View Article and Find Full Text PDF

Glyburide is widely used for the treatment of type 2 diabetes. We studied the mechanisms involved in the disposition of glyburide and its pharmacologically active hydroxy metabolites M1 and M2b and evaluated their clinical pharmacokinetics and the potential role in glyburide-induced cholestasis employing physiologically based pharmacokinetic (PBPK) modeling. Transport studies of parent and metabolites in human hepatocytes and transfected cell systems imply hepatic uptake mediated by organic anion-transporting polypeptides.

View Article and Find Full Text PDF

In the search for novel bile acid (BA) biomarkers of liver organic anion-transporting polypeptides (OATPs), cynomolgus monkeys received oral rifampicin (RIF) at four dose levels (1, 3, 10, and 30 mg/kg) that generated plasma-free values (0.06, 0.66, 2.

View Article and Find Full Text PDF

Transporter-mediated hepatic uptake is proven to be the rate-determining step in the systemic clearance of several drugs. Therefore, accurate measurement of active and passive uptake clearances in vitro is critical to facilitate pharmacokinetics and drug-drug interaction predictions. Here, we evaluated the plated human hepatocytes (PHH) and studied the effect of incubation temperature and inhibitor concentration on uptake measurements, in order to reliably estimate hepatic uptake components.

View Article and Find Full Text PDF

Gemfibrozil has been suggested as a sensitive cytochrome P450 2C8 (CYP2C8) inhibitor for clinical investigation by the U.S. Food and Drug Administration and the European Medicines Agency.

View Article and Find Full Text PDF

Quantitative prediction of complex drug-drug interactions (DDIs) involving hepatic transporters and cytochromes P450 (P450s) is challenging. We evaluated the extent of DDIs of nine victim drugs-which are substrates to organic anion-transporting polypeptide 1B1 and undergo P450 metabolism or biliary elimination-caused by five perpetrator drugs, using in vitro data and the proposed extended net-effect model. Hepatobiliary transport and metabolic clearance estimates were obtained from in vitro studies.

View Article and Find Full Text PDF