Publications by authors named "Yi-Zheng Zhen"

Annealing is the process of gradually lowering the temperature of a system to guide it towards its lowest energy states. In an accompanying paper [Y. Luo et al.

View Article and Find Full Text PDF

Annealing has proven highly successful in finding minima in a cost landscape. Yet, depending on the landscape, systems often converge towards local minima rather than global ones. In this Letter, we analyze the conditions for which annealing is approximately successful in finite time.

View Article and Find Full Text PDF

Device-independent quantum key distribution (DIQKD) is information-theoretically secure against adversaries who possess a scalable quantum computer and who have supplied malicious key-establishment systems; however, the DIQKD key rate is currently too low. Consequently, we devise a DIQKD scheme based on the quantum nonlocal Mermin-Peres magic square game: our scheme asymptotically delivers DIQKD against collective attacks, even with noise. Our scheme outperforms DIQKD using the Clauser-Horne-Shimony-Holt game with respect to the number of game rounds, albeit not number of entangled pairs, provided that both state visibility and detection efficiency are high enough.

View Article and Find Full Text PDF

Quantum pseudotelepathy is a strong form of nonlocality. Different from the conventional nonlocal games where quantum strategies win statistically, e.g.

View Article and Find Full Text PDF

The security of quantum key distribution (QKD) usually relies on that the users' devices are well characterized according to the security models made in the security proofs. In contrast, device-independent QKD-an entanglement-based protocol-permits the security even without any knowledge of the underlying quantum devices. Despite its beauty in theory, device-independent QKD is elusive to realize with current technologies.

View Article and Find Full Text PDF

A bit reset is a basic operation in irreversible computing. This costs work and dissipates energy in the computer, creating a limit on speeds and energy efficiency of future irreversible computers. It was recently shown by Zhen et al.

View Article and Find Full Text PDF

We consider how the energy cost of bit reset scales with the time duration of the protocol. Bit reset necessarily takes place in finite time, where there is an extra penalty on top of the quasistatic work cost derived by Landauer. This extra energy is dissipated as heat in the computer, inducing a fundamental limit on the speed of irreversible computers.

View Article and Find Full Text PDF

Quantum key distribution (QKD) networks hold promise for sharing secure randomness over multi-partities. Most existing QKD network schemes and demonstrations are based on trusted relays or limited to point-to-point scenario. Here, we propose a flexible and extensible scheme named as open-destination measurement-device-independent QKD network.

View Article and Find Full Text PDF

Ensuring the nonentanglement-breaking (non-EB) property of quantum channels is crucial for the effective distribution and storage of quantum states. However, a practical method for direct and accurate certification of the non-EB feature is highly desirable. Here, we propose and verify a realistic source based measurement device independent certification of non-EB channels.

View Article and Find Full Text PDF

The Einstein-Podolsky-Rosen (EPR) steering is a subtle intermediate correlation between entanglement and Bell nonlocality. It not only theoretically completes the whole picture of non-local effects but also practically inspires novel quantum protocols in specific scenarios. However, a verification of EPR steering is still challenging due to difficulties in bounding unsteerable correlations.

View Article and Find Full Text PDF