Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a "nanodispersion-in-nanograins" strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.
View Article and Find Full Text PDFSemi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Supported Pd catalysts have attracted most attention due to their superior intrinsic activity but often suffer from low selectivity. Pd single-atom catalysts (SACs) are promising to significantly improve the selectivity, but the activity needs to be improved and the feasible preparation of Pd SACs remains a grand challenge.
View Article and Find Full Text PDFHighly salt-concentrated aqueous solutions are a new class of electrolytes, which provide a wide potential window exceeding 3 V and, hence, realize possibly inexpensive, safe, and high-energy-density storage devices. Herein, we investigate the evolution of the coordination structure and electronic state depending on the salt concentration through soft X-ray emission spectroscopy and first-principles molecular dynamics calculations. Close to the concentration limit, categorized as a "hydrate melt," a long-range hydrogen-bond network of water molecules disappears with emerging localized electronic states that resemble those in the gas phase.
View Article and Find Full Text PDFSinglet oxygen ( O ) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of O . In this work, we develop a graphitic carbon nitride supported Fe single-atoms catalyst (Fe /CN) containing highly uniform Fe-N active sites with a high Fe loading of 11.
View Article and Find Full Text PDFNovel compact x-ray sources based on inverse Compton scattering can generate brilliant hard x-rays in a laboratory setting. Their collimated intense beams with tunable well-defined x-ray energies make them well suited for x-ray spectroscopy techniques, which are typically carried out at large facilities. Here, we demonstrate a first x-ray absorption spectroscopy proof-of-principle experiment using an inverse Compton x-ray source with a flux of >10 photons/s in <5% bandwidth.
View Article and Find Full Text PDFTo unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the dynamical structural change of Rh NPs using dispersive X-ray absorption fine structure spectroscopy (XAFS). The variation of the Rh-Rh interatomic distance and Debye-Waller factor of Rh NPs with a size of 4.0 and 10.
View Article and Find Full Text PDFDry reforming of methane (DRM) is an attractive route to utilize CO as a chemical feedstock with which to convert CH into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM.
View Article and Find Full Text PDFHerein, we report the synthesis and electrochemical oxygen evolution experiments for a graphene-supported NiMnO catalyst. The changes that occur at the Ni active sites during the electrocatalyic oxygen evolution reaction (OER) were elucidated by a combination of operando Ni L-edge X-ray absorption spectroscopy (XAS) and Ni 2p3d resonant inelastic X-ray scattering (RIXS). These data are compared to reference measurements on NiO, β-Ni(OH), β-NiOOH, and γ-NiOOH.
View Article and Find Full Text PDFSurface-supported isolated atoms in single-atom catalysts (SACs) are usually stabilized by diverse defects. The fabrication of high-metal-loading and thermally stable SACs remains a formidable challenge due to the difficulty of creating high densities of underpinning stable defects. Here we report that isolated Pt atoms can be stabilized through a strong covalent metal-support interaction (CMSI) that is not associated with support defects, yielding a high-loading and thermally stable SAC by trapping either the already deposited Pt atoms or the PtO units vaporized from nanoparticles during high-temperature calcination.
View Article and Find Full Text PDFIron sulfur (FeS) proteins perform a wide range of biological functions including electron transfer and catalysis. Understanding the complex reactivity of these systems requires a detailed understanding of their electronic properties, which are encoded in the low-energy d-d excited states. Here we demonstrate that iron L-edge 2p3d resonant inelastic X-ray scattering (RIXS) can measure d-d excitation spectra in a series of monomeric, dimeric, and tetrameric FeS model complexes.
View Article and Find Full Text PDFTo unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the electronic and crystal structures of the Rh NPs using various synchrotron based X-ray techniques. Electronic structure studies revealed that the hydrogen-storage capability of Rh NPs could be attributed to their more unoccupied d-DOSs than that of the bulk near the Fermi level. Crystal structure studies indicated that lattice distortion and mean-square displacement increase while coordination number decreases with decreasing particle size and the hydrogen-absorption capability of Rh NPs improves to a greater extent with increased structural disorder in the local structure than with that in the mean structure.
View Article and Find Full Text PDFTwo isostructural cobalt containing polyoxometalate water oxidation catalysts, [Co(HO)(α-PWO)] (Co4P2) and [Co(HO)(α-VWO)] (Co4V2), exhibit large differences in their catalytic performance. The substitution of phosphorus centers in Co4P2 with redox-active vanadium centers in Co4V2 leads to electronic structure modifications. Evidence for the significance of the vanadium centers to catalysis, predicted by theory, was found from soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2017
In-situ carbon-thermal reduction of cobalt oxide nanoparticles supported on carbon nanotubes was studied by cobalt 2p3d resonant inelastic X-ray scattering (RIXS). The in-situ 2p X-ray absorption spectroscopy (XAS) and RIXS measurements were performed at 500, 600, and 700 °C, where four consistent excitation energies were used for RIXS acquisitions. After 700 °C reduction, the XAS spectrum shows a cobalt metal-like shape, while the RIXS spectra reveal the minority cobalt monoxide phase.
View Article and Find Full Text PDFLigand field spectra provide direct information about the electronic structure of transition metal complexes. However, these spectra are difficult to measure by conventional optical techniques due to small cross sections for d-to-d transitions and instrumental limitations below 4000 cm. 2p3d resonant inelastic X-ray scattering (RIXS) is a second order process that utilizes dipole allowed 2p to 3d transitions to access d-d excited states.
View Article and Find Full Text PDFIn situ high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) was used to systematically evaluate interactions of HO and O adsorbed on Pt and PtCo nanoparticle catalysts in different particle sizes. The systematic increase in oxidation due to adsorption of different species (HO adsorption
Water existing in the vicinity of polyelectrolytes exhibits unique structural properties, which demonstrate key roles in chemistry, biology, and geoscience. In this study, X-ray absorption and emission spectroscopy was employed to observe the local hydrogen-bonding structure of water confined in a charged polyelectrolyte brush. Even at room temperature, a majority of the water molecules confined in the polyelectrolyte brush exhibited one type of hydrogen-bonding configuration: a slightly distorted, albeit ordered, configuration.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2016
Homogeneous catalysts generally possess superior catalytic performance compared to heterogeneous catalysts. However, the issue of catalyst separation and recycling severely limits their use in practical applications. Single-atom catalysts have the advantages of both homogeneous catalysts, such as "isolated sites", and heterogeneous catalysts, such as stability and reusability, and thus would be a promising alternative to traditional homogeneous catalysts.
View Article and Find Full Text PDFPoly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree.
View Article and Find Full Text PDFRice to power: Amylopectin is a major component of agricultural products such as corn, potato, and rice. Silicon-graphite electrodes are prepared by using slurries of these polysaccharides as binders. Compared to the conventionally used binder PVdF, they exhibit drastically improved electrode performance in Li cells.
View Article and Find Full Text PDF