Ovarian cancer (OvCa) is the most fatal among gynecological cancers and affects many women worldwide. Since OvCa is prone to metastasis, which significantly increases chances of death, biomarkers for early-stage OvCa are greatly needed. This study develops an integrated microfluidic platform for isolating and quantifying one of the OvCa blood biomarkers.
View Article and Find Full Text PDFAntimicrobial resistance stemming from indiscriminate usage of antibiotics has emerged as a global healthcare issue with substantial economic implications. The inefficacy of commonly used antibiotics combined with superfluous consumption has worsened the issue. Rapid antimicrobial susceptibility testing (AST) to antibiotics can be advantageous in thwarting bacterial infections.
View Article and Find Full Text PDFCell-released, membrane-encapsulated extracellular vesicles (EVs) serve as a means of intercellular communication by delivering bioactive cargos including proteins, nucleic acids and lipids. EVs have been widely used for a variety of biomedical applications such as biomarkers for disease diagnosis and drug delivery vehicles for therapy. Herein, this study reports a novel method for label-free, contact-free isolation and recovery of EVs via optically-induced dielectrophoresis (ODEP) on a pneumatically-driven microfluidic platform with minimal human intervention.
View Article and Find Full Text PDFSince early diagnosis of sepsis may assist clinicians in initiating timely, effective, and prognosis-improving antibiotic therapy, we developed an integrated microfluidic chip (IMC) for rapid isolation of both Gram-positive and Gram-negative bacteria from blood. The device comprised a membrane-based filtration module (90 min operating time), a bacteria-capturing module using a micro-mixer containing magnetic beads coated with "flexible neck" regions of mannose-binding lectin proteins for bacteria capture (20 min), and a miniature polymerase chain reaction (PCR) module for bacteria identification (90 min via TaqMan® probe technology). The filter separated all white blood cells and 99.
View Article and Find Full Text PDFCirculating extracellular vesicles (EVs), which can contain a wide variety of molecules such as proteins, messenger ribonucleic acids (mRNAs), micro ribonucleic acids (miRNAs) and deoxyribonucleic acids (DNAs) from cells or tissues of origin, have attracted great interest given their potential to serve as biomarkers that can be harvested in body fluids (i.e., relatively non-invasive).
View Article and Find Full Text PDFAn integrated microfluidic system combining 1) an optically-induced-dielectrophoresis (ODEP) module for manipulation of drug-containing particles and 2) an ultraviolet (UV) "direct writing" module capable of patterning hydrogels was established herein for automatic formulation of customized digital drug cocktails. Using the ODEP module, the drug-containing particles were assembled by using moving light patterns generated from a digital projector. The hydrogel, poly(ethylene glycol) diacrylate (PEGDA), was used as the medium in the ODEP module such that the assembled drug-containing particles could be UV-cured and consequently encapsulated in "pills" of specific sizes and shapes by using the UV direct writing module.
View Article and Find Full Text PDFAccording to World Health Organization reports, cardiovascular diseases (CVDs) are amongst the major causes of death globally and are responsible for over 18 million deaths every year. Traditional detection methods for CVDs include cardiac computerized tomography scans, electrocardiography, and myocardial perfusion imaging scans. Although diagnosis of CVDs through such bio-imaging techniques is common, these methods are relatively costly and cannot detect CVDs in their earliest stages.
View Article and Find Full Text PDF