The highly developed sensitive olfactory system is essential for Scott (Hemiptera: Pentatomidae) adults, an widely distributed natural predatory enemy, to locate host plants. During this process, odorant-binding proteins (OBPs) are thought to have significant involvement in the olfactory recognition. However, the roles of OBPs in the olfactory perception of are not frequently reported.
View Article and Find Full Text PDFOdorant binding proteins (OBPs) are involved in odorant discrimination and act as the first filter in the peripheral olfactory system. Previous studies have shown that BhorOBP29 is potentially involved in olfactory perception in an important wood-boring pest Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), however, its function remains unclear. Here, we investigated the ligand-binding profiles of recombinant BhorOBP29 with 22 compounds from its host plant using fluorescence competitive binding assays and fluorescence quenching assays.
View Article and Find Full Text PDFBackground: The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications.
View Article and Find Full Text PDFNatural enemies such as parasitoids and parasites depend on sensitive olfactory to search for their specific hosts. Herbivore-induced plant volatiles (HIPVs) are vital components in providing host information for many natural enemies of herbivores. However, the olfactory-related proteins involved in the recognition of HIPVs are rarely reported.
View Article and Find Full Text PDFJ Agric Food Chem
December 2022
Odorant binding proteins (OBPs) play an important role in insect peripheral olfactory systems and exploring the physiological function of OBPs could facilitate the understanding of insects' chemical communication. Here, the functional analysis of an antenna-based NlugOBP8 from brown planthopper (BPH) (Stål) was performed both in vitro and in vivo. Recombinant NlugOBP8 exhibited strong binding affinity to 13 out of 26 rice plant volatiles and could form a stable complex with 9 of them according to the fluorescence binding and fluorescence quenching experiments.
View Article and Find Full Text PDFInsect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns.
View Article and Find Full Text PDFThe ICE-CBF-COR pathway plays a vital role in improving the cold tolerance of plants. As an evergreen small shrub, Ammopiptanthus nanus has a high tolerance to cold stress because of its special growth conditions. Regrettably, no cold-responsive genes in the ICE-CBF-COR pathway have been reported in A.
View Article and Find Full Text PDFIntroduction: The Drosophila dorsal vessel (DV) is comprised of two opposing rows of cardioblasts (CBs) that migrate toward the dorsal midline during development. While approaching the midline, CBs change shape, enabling dorsal and ventral attachments with their contralateral partners to create a linear tube with a central lumen. We previously demonstrated DV closure occurs via a "buttoning" mechanism where specific CBs advance ahead of their lateral neighbors, and attach creating transient holes, which eventually seal.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2020
Degenerative cervical myelopathy (DCM) is a common aging condition caused by spinal cord compression. Individuals with DCM often presented with residual balance and functional impairments postoperatively. Perturbation-based balance training (PBT) has been shown to have positive effects on populations with neurological disorders but has yet to be investigated in DCM.
View Article and Find Full Text PDFOdorant binding proteins (OBPs) play a key role in chemoreception in insects. In an earlier study, we identified CmedOBP14 from the rice leaf folder, Cnaphalocrocis medinalis, with potential physiological functions in olfaction. Here, we performed a competitive binding assay under different pH conditions as well as knockdown via RNA interference to determine the specific role of CmedOBP14 in C.
View Article and Find Full Text PDFAims: Glutamatergic receptors are important targets of ethanol. Intake of ethanol may produce analgesic effects. The present study examined the effects of ethanol on the activity of ionotropic glutamate receptors in spinal cord substantia gelatinosa (SG) neurons, critical neurons involved in nociceptive transmission.
View Article and Find Full Text PDFIn light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles.
View Article and Find Full Text PDFOdorant binding proteins (OBPs) transport hydrophobic odorants from the environment to odorant receptors and play an important role in specific recognition of volatiles. Here, we expressed and purified a minus-C OBP, BhorOBPm2, from Batocera horsfieldi, a major pest of Popolus, to determine its binding characteristics with 58 candidate volatiles using a fluorescence competition-binding assay. We showed that BhorOBPm2 exhibited high binding affinity with chain volatiles and that ligands were selected based on chain length.
View Article and Find Full Text PDFOdorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M.
View Article and Find Full Text PDFThe embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood.
View Article and Find Full Text PDFDrosophila embryonic dorsal vessel (DV) morphogenesis is a highly stereotyped process that involves the migration and morphogenesis of 52 pairs of cardioblasts (CBs) in order to form a linear tube. This process requires spatiotemporally-regulated localization of signaling and adhesive proteins in order to coordinate the formation of a central lumen while maintaining simultaneous adhesion between CBs. Previous studies have shown that the Slit/Roundabout and Netrin/Unc5 repulsive signaling pathways facilitate site-specific loss of adhesion between contralateral CBs in order to form a luminal space.
View Article and Find Full Text PDFIntroduction: In this study we examined Roundabout signaling in the Drosophila embryonic hindgut.
Results: Slit and its receptors Roundabout (Robo) and Roundabout 2 (Robo2) localize to discrete regions in the hindgut epithelium and surrounding visceral mesoderm. Loss of robo, robo2 or slit did not disrupt overall hindgut patterning.
Sec1/Munc18 (SM) proteins bind cognate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and stimulate vesicle membrane fusion. Before fusion, vesicles are docked to specific target membranes. Regulation of vesicle docking is attributed to some but not all SM proteins, suggesting specialization of this earlier function.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2007
Spot 14 (S14) is a small acidic protein with no sequence similarity to other mammalian gene products. Its biochemical function is elusive. Recent studies have shown that, in some cancers, human S14 (hS14) localizes to the nucleus and is amplified, suggesting that it plays a role in the regulation of lipogenic enzymes during tumorigenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2006
The Sec1/Munc-18 (SM) family of proteins is required for vesicle fusion in eukaryotic cells and has been linked to the membrane-fusion proteins known as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SM proteins may activate the target-membrane SNARE, syntaxin, for assembly into the fusogenic SNARE complex. In support of an activation role, SM proteins bind directly to their cognate syntaxins.
View Article and Find Full Text PDFThe p160 co-activators, SRC1 (steroid receptor co-activator 1), GRIP1 (glucocorticoid-receptor-interacting protein 1) and ACTR (activator for thyroid hormone and retinoid receptors), have two ADs (activation domains), AD1 and AD2. AD1 is a binding site for the related co-activators, CBP (cAMP-response-element-binding protein-binding protein) and p300, whereas AD2 binds to another co-activator, co-activator-associated arginine methyltransferase 1 (CARM1). Here, we identified two CBP-interacting sites [amino acids 1075-1083 (site I) and 1095-1106 (site II)] in a so-called CBP-dependent transactivation domain (AD1; amino acids 1057-1109) of GRIP1.
View Article and Find Full Text PDFBasement membrane laminins bearing the alpha2-subunit interact with alpha-dystroglycan and beta1-integrins, cell-surface receptors that are found within the rectilinear costameric lattices of skeletal muscle sarcolemma. Mutations of the alpha2 subunit are a major cause of congenital muscular dystrophy. To determine whether the costameres are altered as a result of laminin alpha2-mutations, the skeletal muscle surface of a dystrophic mouse (dy(2J)/dy(2J)) lacking the alpha2-LN domain was examined by confocal and widefield deconvolution immunomicroscopy.
View Article and Find Full Text PDF