Our previous study has shown that knockdown could suppress cell proliferation, adhesion, migration and invasion, and promote apoptosis and the cytotoxicity of chemotherapeutic drugs in the B‑lineage acute lymphoblastic leukemia (B‑ALL) cell line SUP‑B15. In this study, we further investigated the molecular mechanism underlying the effects of CD9 on leukemic cell progression and the efficacy of chemotherapeutic agents in B‑ALL cells. Using the CD9‑knockdown SUP‑B15 cells, we demonstrated that the silencing of the gene significantly reduced the expression of phosphorylated‑phosphatidylinositol‑3 kinase (p‑PI3K), phosphorylated‑protein kinase B (p‑AKT), P‑glycoprotein (P‑gp), multidrug resistance‑associated protein 1 (MRP1), breast cancer resistance protein (BCRP), matrix metalloproteinase 2 (MMP2) and phosphorylated‑focal adhesion kinase (p‑FAK).
View Article and Find Full Text PDFBackground: Peripheral monocytes, a key cell type for innate immunity, have been shown to be associated with survival in various types of hematological malignancies. However, no previous studies regarding the prognostic impact of peripheral absolute monocyte count (AMC) in early relapsed B-lineage acute lymphoblastic leukemia (B-ALL) have been reported.
Methods: Forty-nine cases of early relapsed adult B-ALL were reviewed.
The relationship between the levels of renalase and changes in proteinuria, hypertension, renal function, renal tubular epithelial cell apoptosis and B-cell lymphoma-2 (Bcl-2) expression was investigated in patients (chronic nephritis, primary nephrotic syndrome or other kidney disease) that underwent renal biopsy. The study group comprised 72 patients undergoing renal biopsy. Patient profiles and renal function were collected.
View Article and Find Full Text PDF