An important subject of porous organic materials is their capacity to access enantioselectivity due to their high surface area, controllable pore size, and ease of functionalization. However, recyclability of enantio-separation is a challenge, mainly due to the complex procedures of recovery and refreshing from enantiomers. For the first time, we combined nanochannel technology and supramolecular chiral assembly to achieve efficient enantioselectivity.
View Article and Find Full Text PDFSelf-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation.
View Article and Find Full Text PDFA series of coil-rod-coil molecules containing a 9,10-distyrylanthracene (DSA) core was successfully synthesized. The flexible parts of these molecules are composed of different polyethylene oxide chains. These molecules with aggregation-induced luminescence properties can be assembled into micelles, spheres, and sheet-like nano-assemblies in aqueous solution and have a strong ability to form charge-transfer complexes with the electron-deficient small molecules 2,4,5,7-tetranitro-9-fluorenone and 2,4,6-trinitrophenol.
View Article and Find Full Text PDFIn the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application.
View Article and Find Full Text PDFStimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates.
View Article and Find Full Text PDFMicroporous Mesoporous Mater
October 2021
COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19.
View Article and Find Full Text PDFThe aggregation-induced emission (AIE) effect is an important feature for luminescence studies, which can offer a broader range of applications for fluorescent materials. Herein, we report the morphological control and photoproperties of amphipathic propeller-shaped rod-coil molecules based on a benzene-1,3,5-tricarboxamide (BTA) unit, which restricts the intramolecular rotation and leads to the AIE effect during the self-assembly process. Investigations on the assembly of these molecules have revealed that tetragonal perforated lamella, hexagonal columnar, body-centered tetragonal micellar, and hexagonal close-packed nanostructures were spontaneously formed in the solid-state.
View Article and Find Full Text PDFSelf-assembled nanomaterials composed of amphiphilic oligomers with functional groups have been applied in the fields of biomimetic chemistry and on-demand delivery systems. Herein, we report the assembly behavior and unique properties of an emergent n-shaped rod-coil molecule containing an azobenzene (AZO) group upon application of an external stimulus (thermal, UV light). The n-shaped amphiphilic molecules comprising an aromatic segment based on anthracene, phenyl linked with azobenzene groups, and hydrophilic oligoether (chiral) segments self-assemble into large strip-like sheets and perforated-nanocage fragments in an aqueous environment, depending on the flexible oligoether chains.
View Article and Find Full Text PDFHexagonal and wormhole-type mesoporous geopolymers were developed by controlling the concentration of a structure directing agent (cetrimonium bromide, CTAB) with fixed ratios of Si/Al, KOH/(Si + Al), and HO/(Si + Al), and their detailed porous structures were confirmed by TEM, N adsorption-desorption and X-ray diffraction measurements. The as-prepared geopolymers were then used as templates to replicate porous carbons with various structures and porosities for CO adsorption. To understand the correlation between the CO adsorptivity and porous structures, we tuned the porosity of the geopolymer-templated carbons by modifying the structures of the geopolymers.
View Article and Find Full Text PDFChem Commun (Camb)
March 2019
The nanostructure and morphology of mesoporous carbon obtained from a newly designed porous geopolymer template were characterized by low-voltage high-resolution scanning electron microscopy. The present porous carbon exhibited a large specific surface area and pore volume, resulting in a high CO2 uptake capacity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
Single particle Mie calculations of near micron-sized TiO particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction.
View Article and Find Full Text PDF