Enzymatic synthesis that is commenced by the sugar nucleotide regeneration system (SNRS) protocol can minimize 1) the consumption of exorbitant sugar nucleotides, 2) the amount of transferases required, and 3) byproduct feedback inhibition. In this study, LacNAc extensions/modifications of the N-linked mannose core were carried out efficiently with SNRS with high yields and purities on all branches in a uniform manner. In addition, we demonstrate that with SNRS, bacterial glycosyltransferases exhibit a wide acceptor tolerance for bi- and triantennary mannose core structures as substrates for target oligosaccharides.
View Article and Find Full Text PDFThe excellent molecular recognition capabilities of monoclonal antibodies (mAbs) have opened up exciting opportunities for biotherapeutic discovery. Taking advantage of the full potential of this tool necessitates affinity ligands capable of conjugating directly with small molecules to a defined degree of biorthogonality, especially when modifying natural Abs. Herein, a bioorthogonal boronate-affinity-based Ab ligand featuring a 4-(dimethylamino)pyridine and an S-aryl thioester to label full-length Abs is reported.
View Article and Find Full Text PDFBiosens Bioelectron
October 2018
Here we report an electrochemical immunoassay platform called Proton-ELISA (H-ELISA) for the detection of bioanalytes. H-ELISA uniquely utilizes protons as an immunoassay detection medium, generated by the enzyme glucose oxidase (GOx) coupled with Fenton's reagent in a proton amplification reaction cascade that results in a highly amplified signal. A proton-sensitive dual-gated ion-sensitive field effect transistor (DG-ISFET) sensor was also developed for sensitive and accurate detection of the proton signal in H-ELISA.
View Article and Find Full Text PDF