Light-matter interaction is crucial to both understanding fundamental phenomena and developing versatile applications. Strong coupling, robustness, and controllability are the three most important aspects in realizing light-matter interactions. Topological and non-Hermitian photonics have provided frameworks for robustness and control flexibility, respectively.
View Article and Find Full Text PDFNonclassical quantum states are the pivotal features of a quantum system that differs from its classical counterpart. However, the generation and coherent control of quantum states in a macroscopic spin system remain an outstanding challenge. Here we experimentally demonstrate the quantum control of a single magnon in a macroscopic spin system (i.
View Article and Find Full Text PDFSqueezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical non-linear processes. Here, we show how a non-linear magnetostrictive interaction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved.
View Article and Find Full Text PDFThe dipole approximation is usually employed to describe light-matter interactions under ordinary conditions. With the development of artificial atomic systems, 'giant atom' physics is possible, where the scale of atoms is comparable to or even greater than the wavelength of the light they interact with, and the dipole approximation is no longer valid. It reveals interesting physics impossible in small atoms and may offer useful applications.
View Article and Find Full Text PDFBistable mechanical vibration is observed in a cavity magnomechanical system, which consists of a microwave cavity mode, a magnon mode, and a mechanical vibration mode of a ferrimagnetic yttrium-iron-garnet sphere. The bistability manifests itself in both the mechanical frequency and linewidth under a strong microwave drive field, which simultaneously activates three different kinds of nonlinearities, namely, magnetostriction, magnon self-Kerr, and magnon-phonon cross-Kerr nonlinearities. The magnon-phonon cross-Kerr nonlinearity is first predicted and measured in magnomechanics.
View Article and Find Full Text PDFMultistability is an extraordinary nonlinear property of dynamical systems and can be explored to implement memory and switches. Here we experimentally realize the tristability in a three-mode cavity magnonic system with Kerr nonlinearity. The three stable states in the tristable region correspond to the stable solutions of the frequency shift of the cavity magnon polariton under specific driving conditions.
View Article and Find Full Text PDFPhys Rev Lett
October 2020
By engineering an anti-parity-time (anti-PT) symmetric cavity magnonics system with precise eigenspace controllability, we observe two different singularities in the same system. One type of singularity, the exceptional point (EP), is produced by tuning the magnon damping. Between two EPs, the maximal coherent superposition of photon and magnon states is robustly sustained by the preserved anti-PT symmetry.
View Article and Find Full Text PDFWe reveal the cooperative effect of coherent and dissipative magnon-photon couplings in an open cavity magnonic system, which leads to nonreciprocity with a considerably large isolation ratio and flexible controllability. Furthermore, we discover unidirectional invisibility for microwave propagation, which appears at the zero-damping condition for hybrid magnon-photon modes. A simple model is developed to capture the generic physics of the interference between coherent and dissipative couplings, which accurately reproduces the observations over a broad range of parameters.
View Article and Find Full Text PDFWe report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.
View Article and Find Full Text PDFMagnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes.
View Article and Find Full Text PDF