Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between.
View Article and Find Full Text PDFSolution processing of π-conjugated polymers constitutes a major low-cost manufacturing method for the fabrication of many new organic optoelectronic devices. The solution self-assembly kinetics of π-conjugated rod-coil block copolymers of symmetric poly(3-hexyl thiophene)-b-poly(2-vinyl pyridine) (P3HT-P2VP) during drying and the phase transformations of the subsequently dried samples were studied by using a combination of TEM, SAXS, WAXS and DSC measurements. During solution drying in chlorobenzene, a good solvent for the copolymer, P3HT-P2VP first formed nanoseed aggregates followed by the directional growth of nanofibrils driven by the formation of prevailing form II P3HT crystals within its nanofibril core confined by the surrounding domain of P2VP blocks.
View Article and Find Full Text PDF