Nanopore technology holds great potential for single-molecule identification. However, extracting meaningful features from ionic current signals and understanding the molecular mechanisms underlying the specific features remain unresolved. In this study, we uncovered a distinctive ionic current pattern in a K238Q aerolysin nanopore, characterized by transient spikes superimposed on two stable transition states.
View Article and Find Full Text PDFThe great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics.
View Article and Find Full Text PDFMetal centers are essential for enzyme catalysis, stabilizing the active site, facilitating electron transfer, and maintaining the structure through coordination with amino acids. In this study, K238H-AeL nanopores with histidine sites were designed as single-molecule reactors for the measurement of single-molecule coordination reactions. The coordination mechanism of Au(III) with histidine and glutamate in biological nanopore confined space was explored.
View Article and Find Full Text PDFOxygen production within human cells plays a critical role in cellular metabolism and is implicated in various diseases, including cancer. Investigating cellular heterogeneity under oxygen stimulation is crucial for elucidating disease mechanisms and advancing early therapeutic design. In this study, the platinum-based wireless nanopore electrode (WNE) with a diameter of ≈200 nm is employed as a powerful tool to produce oxygen molecules near the cell nucleus.
View Article and Find Full Text PDFNat Chem Biol
September 2024
Sulfation is considered the most prevalent post-translational modification (PTM) on tyrosine; however, its importance is frequently undervalued due to difficulties in direct and unambiguous determination from phosphorylation. Here we present a sequence-independent strategy to directly map and quantify the tyrosine sulfation states in universal native peptides using an engineered protein nanopore. Molecular dynamics simulations and nanopore mutations reveal specific interactions between tyrosine sulfation and the engineered nanopore, dominating identification across diverse peptide sequences.
View Article and Find Full Text PDFUnderstanding single-molecule multivalent ligand-receptor interactions is crucial for comprehending molecular recognition at biological interfaces. However, label-free identifications of these transient interactions during multistep binding processes remains challenging. Herein, we introduce a ligand-receptor-anchored nanopore that allows the protein to maintain structural flexibility and favorable orientations in native states, mapping dynamic multivalent interactions.
View Article and Find Full Text PDFNat Nanotechnol
November 2024
Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore.
View Article and Find Full Text PDFCell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2023
Conventional protein engineering methods for modifying protein nanopores are typically limited to 20 natural amino acids, which restrict the diversity of the nanopores in structure and function. To enrich the chemical environment inside the nanopore, we employed the genetic code expansion (GCE) technique to site-specifically incorporate the unnatural amino acid (UAA) into the sensing region of aerolysin nanopores. This approach leveraged the efficient pyrrolysine-based aminoacyl-tRNA synthetase-tRNA pair for a high yield of pore-forming protein.
View Article and Find Full Text PDFDisulfide bonds play an important role in thiol-based redox regulation. However, owing to the lack of analytical tools, little is known about how local O mediates the reversible thiol/disulfide cycle under protein confinement. In this study, a protein-nanopore inside a glove box is used to control local O for single-molecule reaction, as well as a single-molecule sensor for real-time monitoring of the reversible thiol/disulfide cycle.
View Article and Find Full Text PDFWe developed a bipolar SiNx nanopore for the observation of single-molecule heterogeneous enzymatic dynamics. Single glucose oxidase was immobilized inside the nanopore and its electrocatalytic behaviour was real-time monitored continuous recording of ionic flux amplification. The temporal heterogeneity in enzymatic properties and its spatial dynamic orientations were observed simultaneously, and these two properties were found to be closely correlated.
View Article and Find Full Text PDFThe discovery of crosstalk effects on the renin-angiotensin system (RAS) is limited by the lack of approaches to quantitatively monitor, in real time, multiple components with subtle differences and short half-lives. Here we report a nanopore framework to quantitatively determine the effect of the hidden crosstalk between angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) on RAS. By developing an engineered aerolysin nanopore capable of single-amino-acid resolution, we show that the ACE can be selectively inhibited by ACE2 to prevent cleavage of angiotensin I, even when the concentration of ACE is more than 30-fold higher than that of ACE2.
View Article and Find Full Text PDFSequence-defined polymer is one of the most promising alternative media for high-density data storage. It could be used to alleviate the problem of insufficient storage capacity of conventional silicon-based devices for the explosively increasing data. To fulfil the goal of polymer data storage, suitable methods should be developed to accurately read and decode the information-containing polymers, especially for those composed by a combination of the natural and unnatural monomers.
View Article and Find Full Text PDFTo clarify the discrete nature of electrochemistry, single-entity electrochemistry of collision (SEEC) utilizes a confinement space in a nanoscale local electric field at a microscale electrode interface for characterizing single freely diffusing entities. This promising method provides new insights at the single entity level. However, the precise measurement is challenging because of the short residence time and wide current fluctuations caused by the dynamic and stochastic motion of a single entity at the interface of the electrode.
View Article and Find Full Text PDFRNA modifications modulate essential cellular functions. However, it is challenging to quantitatively identify the differences in RNA modifications. To further improve the single-molecule sensing ability of nanopores, we propose a machine-learning algorithm called SmartImage for identifying and classifying nanopore electrochemical signals based on a combination of improved graph conversion methods and deep neural networks.
View Article and Find Full Text PDFSilver salt oxide shows superior oxidation ability for the applications of superconductivity, sterilization, and catalysis. However, due to the easy decomposition, the catalytic properties of silver salt oxide are difficult to characterize by conventional methods. Herein, we used a closed-type wireless nanopore electrode (CWNE) to and real-time monitor the electrocatalytic performance of AgNO in the oxygen evolution reaction.
View Article and Find Full Text PDFInspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing.
View Article and Find Full Text PDFThe precise manipulation of single cells plays a fundamental role for single cell measurement, which is crucial for understanding the diverse cellular mechanisms. Unusual single cell behavior could thus be identified by integrating with advanced analytical methods such as single cell omics, unraveling the intrinsic cellular heterogeneity hidden in ensemble measurements. Herein, this technical note reports a nanopipet-based versatile method for manipulation of an ultrasmall volume of liquid, which further enables the precise manipulation of single cells.
View Article and Find Full Text PDFAccurate discrimination of amyloid-β (Aβ) peptides containing familial point mutations would advance the knowledge of their roles in early-onset Alzheimer's disease. Herein, we simultaneously identified the mutant A21G, E22G, E22Q, and the wild-type (WT) Aβ peptides with aerolysin nanopore using a 3D blockage mapping strategy. The standard deviation of current blockade fluctuations (σ ) was proposed as a new supplement to current blockage (I /I ) and duration time (t ) to profile the blockage characteristics of single molecules.
View Article and Find Full Text PDFChirality is essential in nearly all biological organizations and chemical reactions but is rarely considered due to technical limitations in identifying L/D isomerization. Using OmpF, a membrane channel from with an electrostatically asymmetric constriction zone, allows discriminating chiral amino acids in a single peptide. The heterogeneous distribution of charged residues in OmpF causes a strong lateral electrostatic field at the constriction.
View Article and Find Full Text PDF