Privacy protection data processing has been critical in recent years when pervasively equipped mobile devices could easily capture high-resolution personal images and videos that may disclose personal information. We propose a new controllable and reversible privacy protection system to address the concern in this work. The proposed scheme can automatically and stably anonymize and de-anonymize face images with one neural network and provide strong security protection with multi-factor identification solutions.
View Article and Find Full Text PDFSteganography is one of the most crucial methods for information hiding, which embeds secret data on an ordinary file or a cover message for avoiding detection. We designed a novel rate-distortion-based large-capacity secure steganographic system, called rate-distortion-based Stego (RD-Stego), to effectively solve the above requirement. The considered effectiveness of our system design includes embedding capacity, adaptability to chosen cover attacks, and the stability of the trained model.
View Article and Find Full Text PDF