Publications by authors named "Yi-Lin Ren"

Colorectal cancer (CRC), a major global health concern, may be influenced by dietary protein digestibility impacting gut microbiota and metabolites, which is crucial for cancer therapy effectiveness. This study explored the effects of a casein protein diet (CTL) versus a free amino acid (FAA)-based diet on CRC progression, gut microbiota, and metabolites using carcinogen-induced (AOM/DSS) and spontaneous genetically induced ( mice) CRC mouse models. Comprehensive approaches including 16s rRNA gene sequencing, transcriptomics, metabolomics, and immunohistochemistry were utilized.

View Article and Find Full Text PDF

Background: Advanced colorectal adenomas are at a risk of malignant transformation following endoscopic resection, and colonoscopic monitoring interval after polypectomy have been widely used. This study aims to investigate the prevailing state of compliance with postoperative colonoscopic surveillance among patients with advanced colorectal adenomas and its' influencing factors at Affiliated Hospital of Jiangnan University between November 2020 and April 2021.

Methods: A retrospective analysis was conducted on patients who underwent endoscopic treatment for ACA at Affiliated Hospital of Jiangnan University from November 2020 to April 2021.

View Article and Find Full Text PDF

Although excessive salt consumption appears to hasten intestinal aging and increases susceptibility to cardiovascular disease, the molecular mechanism is unknown. In this study, mutual validation of high salt (HS) and aging fecal microbiota transplantation (FMT) in C56BL/6 mice was used to clarify the molecular mechanism by which excessive salt consumption causes intestinal aging. Firstly, we observed HS causes vascular endothelial damage and can accelerate intestinal aging associated with decreased colon and serum expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and increased malondialdehyde (MDA); after transplantation with HS fecal microbiota in mice, vascular endothelial damage and intestinal aging can also occur.

View Article and Find Full Text PDF

Cereal vinegar sediment (CVS) is a natural precipitate formed during the aging process of traditional grain vinegar. It has been used as Chinese traditional medicine, while its composition and function are reported minimally. In this study, we measured CVS in terms of saccharide, protein, fat and water content, and polyphenol and flavonoid content.

View Article and Find Full Text PDF

Objectives: This meta-analysis was designed to systematically evaluate whether autologous cytokine-induced killer cells (CIK) or dendritic cells and cytokine-induced killer cells (DC-CIK) immunotherapy combined with chemotherapy can improve the therapeutic effect and safety of chemotherapy in esophageal cancer (EC).

Materials And Methods: Randomized controlled trials (RCTs) were electronically searched databases including CNKI, WanFang, WeiPu, CBMDisc, PubMed, Web of Science, EMbase, the Cochrane Library, and Clinical Trials. The databases were searched for articles published until June 2019.

View Article and Find Full Text PDF

Connecting tubule glomerular feedback (CTGF) is a mechanism where an increase in sodium (Na) concentration in the connecting tubule (CNT) causes the afferent arteriole (Af-Art) to dilate. We recently reported that aldosterone within the CNT lumen enhances CTGF via a nongenomic effect involving GPR30 receptors and sodium/hydrogen exchanger (NHE), but the signaling pathways of this mechanism are unknown. We hypothesize that aldosterone enhances CTGF via cAMP/protein kinase A (PKA) pathway that activates protein kinase C (PKC) and stimulates superoxide (O) production.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is used to edit eukaryotic genomes. Here, we show that CRISPRi can also be used for fine-tuning prokaryotic gene expression while simultaneously regulating multiple essential gene expression with less labor and time consumption. As a case study, CRISPRi was used to control polyhydroxyalkanoate (PHA) biosynthesis pathway flux and to adjust PHA composition.

View Article and Find Full Text PDF

Afferent (Af-Art) and efferent arterioles resistance regulate glomerular capillary pressure. The nephron regulates Af-Art resistance via: 1) vasoconstrictor tubuloglomerular feedback (TGF), initiated in the macula densa via Na-K-2Cl cotransporters (NKCC2) and 2) vasodilator connecting tubuloglomerular feedback (CTGF), initiated in connecting tubules via epithelial Na channels (ENaC). Furosemide inhibits NKCC2 and TGF.

View Article and Find Full Text PDF

The afferent arteriole (Af-Art) controls glomerular capillary pressure, an important determinant of glomerular injury. Af-Art myogenic response is mediated by ATP, and ATP signaling is in turn mediated by 20-HETE. Dahl salt-sensitive rats (Dahl SS) have decreased renal 20-HETE production.

View Article and Find Full Text PDF

Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) dilates the afferent arteriole (Af-Art), a process we call connecting tubule glomerular feedback (CTGF). We hypothesize that aldosterone sensitizes CTGF via a nongenomic mechanism that stimulates CNT ENaC via the aldosterone receptor GPR30. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused.

View Article and Find Full Text PDF

Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involved.

View Article and Find Full Text PDF

Spontaneously hypertensive rats (SHRs) have normal glomerular capillary pressure even though renal perfusion pressure is higher, suggesting that preglomerular vessels exhibit abnormally high resistance. This may be due to increased superoxide (O(2)(-)) production, which contributes to the vasoconstriction in hypertension. We tested the hypothesis that the myogenic response of the afferent arteriole (Af-Art) is exaggerated in SHRs because of increased levels of reactive oxygen species (ROS).

View Article and Find Full Text PDF

In the renal cortex, the connecting tubule (CNT) returns to the glomerular hilum and contacts the afferent arteriole (Af-Art). Increasing Na delivery to the CNT dilates the Af-Art by activating epithelial Na channels, a process that we call connecting tubule glomerular feedback (CTGF). However, the mediator(s) of CTGF are unknown.

View Article and Find Full Text PDF

Tubuloglomerular feedback (TGF) is the mechanism by which the macula densa (MD) senses increases in luminal NaCl concentration and sends a signal to constrict the afferent arteriole (Af-Art). The kidney expresses constitutively heme oxygenase-2 (HO-2) and low levels of HO-1. HOs release carbon monoxide (CO), biliverdin, and free iron.

View Article and Find Full Text PDF

Superoxide (O(2)(-)) enhances tubuloglomerular feedback by scavenging nitric oxide at the macula densa. However, the singling pathway of O(2)(-) production in the macula densa is not known. We hypothesized that the increase in tubular NaCl concentration that initiates tubuloglomerular feedback induces O(2)(-) production by the macula densa via NAD(P)H oxidase, which is activated by macula densa depolarization.

View Article and Find Full Text PDF

Bradykinin dilates efferent arterioles via release of efferent arteriole epoxyeicosatrienoic acids when perfused retrograde (no glomerular autacoids). However, when efferent arterioles are perfused orthograde through the glomerulus, bradykinin-induced dilatation is caused by a balance between: (1) the glomerular vasoconstrictor 20-hydroxyeicosatetraenoic acid and vasodilator prostaglandins, and (2) epoxyeicosatrienoic acids from the efferent arteriole and possibly the glomerulus. However, the role of 20-hydroxyeicosatetraenoic acid has only been studied with a cyclooxygenase inhibitor, which may artificially enhance its production by shunting arachidonic acid into the cytochrome P450 pathway.

View Article and Find Full Text PDF

Background: The macula densa senses increasing NaCl concentrations in tubular fluid and increases afferent arteriole tone by a process known as tubuloglomerular feedback (TGF). Nitric oxide (NO) production by macula densa neuronal nitric oxide synthase (nNOS) is enhanced by increasing NaCl in the macula densa lumen, and the NO thus formed inhibits TGF. Blocking apical Na(+)/H(+) exchange with amiloride augments TGF and mimics the effect of nNOS inhibition.

View Article and Find Full Text PDF

Background: Recent studies have shown that adenosine triphosphate (ATP) is liberated from macula densa cells in response to increased tubular NaCl in vitro. We tested the hypothesis that increased NaCl in the macula densa stimulates the release of ATP, resulting in extracellular formation of adenosine which is involved in signal transmission of the tubuloglomerular feedback response.

Methods: Rabbit afferent arterioles and attached macula densas were simultaneously microperfused in vitro.

View Article and Find Full Text PDF

Background: Superoxide (O(2) (-)) has been shown to augment tubuloglomerular feedback (TGF) both in vivo and in vitro by scavenging nitric oxide (NO) in the macula densa (MD). We hypothesized that in addition to this mechanism O(2) (-) potentiates TGF by acting directly on the afferent arteriole (Af-Art).

Methods: Microdissected Af-Arts and adherent tubular segments containing the MD were simultaneously microperfused in vitro, maintaining Af-Art pressure at 60 mm Hg.

View Article and Find Full Text PDF

Background: There is evidence that kinins play a role in the regulation of renal hemodynamics. The balance of vascular resistance in afferent and efferent arterioles (Af-Art and Ef-Art) is a crucial factor in controlling glomerular filtration. We have previously reported that bradykinin has a biphasic effect on the Af-Art and that dilation and constriction are due to cyclooxygenase products, not nitric oxide (NO).

View Article and Find Full Text PDF

Background: Tubuloglomerular feedback (TGF) is a process whereby the resistance of the afferent arterioles delivering blood to the glomeruli is regulated by the NaCl concentration of the forming urine in the lumen of the macula densa. Intraglomerular mesangial cells are located between capillaries within the glomerulus, while extraglomerular mesangial cells are located between the macula densa and the afferent arteriole. They are electrically and chemically coupled via gap junctions.

View Article and Find Full Text PDF

Recent studies have shown that angiotensin-(1-7) (Ang-[1-7]), which is generated endogenously from both Ang I and II, is a bioactive component of the renin-angiotensin system and may play an important role in the regulation of blood pressure. However, little is known about its role in regulating the reactivity of the afferent arteriole or the mechanism(s) involved. We hypothesized that Ang-(1-7), acting on specific receptors, participates in the control of afferent arteriole tone.

View Article and Find Full Text PDF

The macula densa detects changes in NaCl concentration in tubular fluid and transmits a feedback signal, known as tubuloglomerular feedback (TGF), which helps to control glomerular afferent arteriole resistance. We and other investigators have reported that synthesis of NO in the macula densa inhibits TGF. NO can be scavenged by superoxide (O(-)(2)) to form peroxynitrite, effectively reducing the bioavailability of NO; there is growing evidence that O(-)(2) regulates vascular tone in the kidney.

View Article and Find Full Text PDF