In this work, well-ordered platinum (Pt) nanocubes (NCs), with precise control on the size and the spatial arrangement, are synthesized from a microemulsion overgrowth in a block copolymer (BC) nanotemplate. The nanovials on this self-assembled BC template serve as microreactors for the reduction of the HCl/HPtCl precursor and direct the ordered periodic arrangement of the reduced Pt nanoparticles (NPs). As the content of HCl increases from 0% to 25%, the Pt NPs evolve from quasi-spheres to NCs, for which the density functional theory (DFT) computation reveals that the different adsorption energies of Cl and HCl dominate this morphology transition.
View Article and Find Full Text PDF