Publications by authors named "Yi-Kun Geng"

The mainstream deammonification of municipal wastewater has been recognized as one of the greatest challenges in wastewater engineering. The conventional activated sludge process has disadvantages of high energy input and sludge production. To tackle this situation, an innovative A-B process, where an anaerobic biofilm reactor (AnBR) functioned as the A stage for energy recovery, and a step-feed membrane bioreactor (MBR) functioned as the B stage for mainstream deammonification, was constructed for carbon-neutral wastewater treatment.

View Article and Find Full Text PDF

Refractory Maillard reaction products (MRPs) produced during thermal hydrolysis pretreatment (THP) of waste activated sludge (WAS) may negatively impact the performance of downstream anaerobic digestion (AD) and nitrogen removal processes. Operating THP at lower temperature can mitigate the production of MRPs and improve biodegradability of WAS, while solubilization of WAS is reduced. This study intends to develop a method to reduce the refractory MRPs of WAS without compromising on the solubilization.

View Article and Find Full Text PDF

Anaerobic biological treatment technologies are one of the major hotspots of antibiotic resistance genes (ARGs). Previous studies have applied the electrochemical process to improve biogas production, however, it was challenged that high voltages might promote membrane permeability and reactive oxygen species overproduction to promote ARGs proliferation. Herein, the biogas production and ARGs proliferation in an anaerobic electrochemical membrane bioreactor (AnEMBR) were investigated at the gradient voltages of 0-0.

View Article and Find Full Text PDF

The presence of antibiotics in wastewater has been widely confirmed. Membrane bioreactor (MBR), as an efficient wastewater treatment technology, has attracted increasing interest in its ability to remove antibiotics in recent years. However, its long-term operation stability and the underlying mechanisms for antibiotics removal are still poorly understood.

View Article and Find Full Text PDF

Recovery of volatile fatty acids (VFAs) from wastewater is an important route for wastewater valorization. Selective acidogenic fermentation enables an efficient production of VFAs from wastewater, whereas electrodialysis (ED) provides an effective approach to concentrate VFAs. However, these two processes have not been coupled in one single system previously.

View Article and Find Full Text PDF

In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m.

View Article and Find Full Text PDF

Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged.

View Article and Find Full Text PDF