J Chem Theory Comput
March 2024
Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities.
View Article and Find Full Text PDFQuantum walks are the quantum counterpart of classical random walks and have various applications in quantum information science. Polar molecules have rich internal energy structure and long coherence time and thus are considered as a promising candidate for quantum information processing. In this paper, we propose a theoretical scheme for implementing discrete-time quantum walks on a circle with dipole-dipole coupled SrO molecules.
View Article and Find Full Text PDF