Publications by authors named "Yi-Jen L Wu"

Imaging of cardiac morphology and functions in high spatiotemporal resolution using MRI is a challenging problem due to limited imaging speed and the inherent tradeoff between spatial resolution, temporal resolution, and signal-to-noise ratio (SNR). The partially separable function (PSF) model has been shown to achieve high spatiotemporal resolution but can lead to noisy reconstructions. This paper proposes a method to improve the SNR and reduce artifacts in PSF-based reconstructions through the use of anatomical constraints.

View Article and Find Full Text PDF

Dynamic imaging methods based on the Partially Separable Functions (PSF) model have been used to perform ungated cardiac MRI, and the critical parameter determining the quality of the reconstructed images is the order, L, of the PSF model. This work extends previous methods by increasing L in the cardiac region to improve the ability of the PSF model to represent complex spatiotemporal signals. The resulting higher order PSF model is fit to sparse (k, t)-space data using spatial-spectral support, spatial-eigenbasis support, and spectral sparsity constraints.

View Article and Find Full Text PDF

Cardiac MRI performed while the patient is breathing is typically achieved using non-real-time techniques such as ECG triggering with respiratory gating; however, modern dynamic imaging techniques are beginning to enable this type of imaging in real-time. One of these dynamic imaging techniques is based on forming a Partially Separable Function (PSF) model of the data, but the model fitting process is known to be sensitive even when truncated SVD regularization is used. As a result, physiologically meaningless artifacts can appear in the dynamic images when the total number of measurements is limited.

View Article and Find Full Text PDF

State-of-the-art cardiac MRI can perform real-time 2D scans without cardiac triggering during a single breath hold; however, real-time cardiac MRI in rats is difficult due to the high heart rate (330 bpm) and presence of respiratory motion. These challenges are overcome by using a dynamic imaging method based on Partially Separable Function (PSF) theory with an acceleration factor of 256. This paper demonstrates that this method can be used in the study of transplanted rat hearts for both anatomical and perfusion applications.

View Article and Find Full Text PDF

Superparamagnetic iron oxide (SPIO) nanoparticles are increasingly being used to noninvasively track cells, target specific molecules and monitor gene expression in vivo. Contrast changes that are subtle relative to intrinsic sources of contrast present a significant detection challenge. Here, we describe a postprocessing algorithm, called Phase map cross-correlation Detection and Quantification (PDQ), with the purpose of automating identification and quantification of localized accumulations of SPIO agents.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjdi5t859e5mmf7h6jefoluptkpt19n67): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once