Publications by authors named "Yi-Hua Qiu"

Unlabelled: Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that continues to have poor prognosis despite recent therapeutic advances. Venetoclax (Ven), a BCL2-inhibitor has shown a high response rate in AML; however, relapse is invariable due to mitochondrial dysregulation that includes upregulation of the antiapoptotic protein MCL1, a central mechanism of Ven resistance (Ven-res). We have previously demonstrated that the transcription factor STAT3 is upregulated in AML hematopoietic stem and progenitor cells (HSPCs) and can be effectively targeted to induce apoptosis of these aberrant cells.

View Article and Find Full Text PDF

Background: Dopamine is a neurotransmitter and has been found to regulate lymphocytes by acting on dopamine receptors (DRs). CD4 T cells express all the five subtypes of DRs, D1R to D5R. Although CD4 T cells have been involved in pathogenesis of rheumatoid arthritis (RA), roles of DRs expressed on these cells in RA are poorly understood.

View Article and Find Full Text PDF

Background: Recent research in our laboratory shows that CD4+ T cells express the β2 adrenergic receptor (β2-AR), and the sympathetic neurotransmitter norepinephrine regulates the function of T cells via β2-AR signaling. However, the immunoregulatory effect of β2-AR and its related mechanisms on rheumatoid arthritis is unknown.

Objective: To explore the effects of β2-AR in collagen-induced arthritis (CIA) on the imbalance of T helper (Th) 17/ regulatory T (Treg) cells.

View Article and Find Full Text PDF

Interleukin 17A (IL-17A) was previously shown to be a key pro-inflammatory factor in diabetes mellitus and associated complications. However, the role of IL-17A in diabetic encephalopathy remains poorly understood. In this study, we established a mouse model of diabetic encephalopathy that was deficient in IL-17A by crossing Il17a mice with spontaneously diabetic Ins2 (Akita) mice.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disease. Recently, neuroinflammation driven by CD4 T cells has been involved in PD pathophysiology. Human and murine lymphocytes express all the five subtypes of dopamine receptors (DRs), DRD1 to DRD5.

View Article and Find Full Text PDF

Background/aims: Neuroendocrine dysregulation has been associated with rheumatoid arthritis (RA). Tyrosine hydroxylase (TH), a rate-limiting enzyme for synthesis of neuroendocrine hormones such as epinephrine, is also expressed in T lymphocytes and regulates balance between helper T (Th) 17 cells and regulatory T (Treg) cells. Herein, we aimed to show that TH expression in joints alleviates joint inflammation and Th17/Treg imbalance in collagen-induced arthritis (CIA), an animal model of RA, and these effects may be implemented by the mechanism of epinephrine action on α1-adrenoreceptor (α1-AR) in T cells.

View Article and Find Full Text PDF

Cerebellar ataxias (CAs) consist of a heterogeneous group of neurodegenerative diseases hallmarked by motor deficits and deterioration of the cerebellum and its associated circuitries. Neuroinflammatory responses are present in CA brain, but how neuroinflammation may contribute to CA pathogenesis remain unresolved. Here, we investigate whether transforming growth factor (TGF)-β1, which possesses anti-inflammatory and neuroprotective properties, can ameliorate the microglia-mediated neuroinflammation and thereby alleviate neurodegeneration in CA.

View Article and Find Full Text PDF

Regulatory T cells (Tregs), which secrete transforming growth factor (TGF)-β and interleukin (IL)-10, have essential role in anti-inflammatory and neurotrophic functions. Herein, we explore the neuroprotection of Tregs in Parkinson's disease (PD) by adoptive transfer of Tregs. Tregs, isolated by magnetic sorting, were activated in vitro and then were adoptively transferred to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated mice.

View Article and Find Full Text PDF

Neuroinflammation has been involved in pathogenesis of Parkinson's disease (PD), a chronic neurodegenerative disease characterized neuropathologically by progressive dopaminergic neuronal loss in the substantia nigra (SN). We recently have shown that helper T (Th)17 cells facilitate dopaminergic neuronal loss in vitro. Herein, we demonstrated that interleukin (IL)-17A, a proinflammatory cytokine produced mainly by Th17 cells, contributed to PD pathogenesis depending on microglia.

View Article and Find Full Text PDF

Neuroinflammation is principally linked to glial function and has been demonstrated to participate in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder characterized by beta-amyloid ccumulation and neurotransmission disruption. Previous findings suggest acetylcholine exerts anti-inflammatory and neuroprotective properties in several neurodegenerative disorders. However, the underlying mechanisms remain elusive.

View Article and Find Full Text PDF

Objective: To investigate the neuroprotective effects of transforming growth factor beta 1(TGF-β1) on the expression and secretion of cytokines induced by Aβ in hippocampal neurons and microglial co-cultures.

Methods: Hippocampal neurons and microglia obtained from SD rat were co-cultured. TGF-β1 was applied on day 5 after the neurons and microglia co-cultures were incubated at the concentrations of 5 or 20 ng/ml, Aβ was added 1 h following TGF-β1 application at a concentration of 5 μmol/L.

View Article and Find Full Text PDF

In acute myeloid leukemia (AML), high Galectin 3 (LGALS3) expression is associated with poor prognosis. The role of LGALS3 derived from mesenchymal stromal cells (MSC) in the AML microenvironment is unclear; however, we have recently found high LGALS3 expression in MSC derived from AML patients is associated with relapse. In this study, we used reverse phase protein analysis (RPPA) to correlate LGALS3 expression in AML MSC with 119 other proteins including variants of these proteins such as phosphorylated forms or cleaved forms to identify biologically relevant pathways.

View Article and Find Full Text PDF

Posttranslational histone tail modifications are known to play a role in leukemogenesis and are therapeutic targets. A global analysis of the level and patterns of expression of multiple histone-modifying proteins (HMP) in acute myeloid leukemia (AML) and the effect of different patterns of expression on outcome and prognosis has not been investigated in AML patients. Here we analyzed 20 HMP by reverse phase protein array (RPPA) in a cohort of 205 newly diagnosed AML patients.

View Article and Find Full Text PDF

Microglia are the main immune cells in the central nervous system. In the present study, the mechanism for acetylcholine (ACh) inhibiting microglial inflammatory response was investigated. Primary culture of microglia was isolated from cerebral cortex of Sprague-Dawley (SD) rats.

View Article and Find Full Text PDF

BACKGROUND Norepinephrine (NE), a neurotransmitter released from the sympathetic nerves, has been shown to be involved in rheumatoid arthritis (RA). However, its role in the sympathetic nervous system in RA is divergent. Herein, we demonstrate that the sympathetic neurotransmitter NE exerts an anti-inflammatory effect in collagen-induced arthritis (CIA), a mouse model of RA, by inhibiting Th17 cell differentiation and function via β2-adrenergic receptor (β2-AR) signaling.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common chronic neurodegenerative disease, is pathologically characterized by the formation of neurofibrillary tangles because of hyperphosphorylation of tau protein and extracellular deposits of amyloid-β (Aβ) protein termed senile plaques. Recent studies indicate that neuronal apoptosis caused by chronic neuroinflammation is one of the important pathogenesis of AD. Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties.

View Article and Find Full Text PDF

Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease. Interleukin (IL)-10 is one of the most important and best anti-inflammatory cytokines. The objective of this report is to investigate whether IL-10 has any role in protecting ventral mesencephalic (VM) neurons in in vitro model of neuroinflammation.

View Article and Find Full Text PDF

The bone marrow microenvironment is known to provide a survival advantage to residual acute myeloid leukemia cells, possibly contributing to disease recurrence. The mechanisms by which stroma in the microenvironment regulates leukemia survival remain largely unknown. Using reverse-phase protein array technology, we profiled 53 key protein molecules in 11 signaling pathways in 20 primary acute myeloid leukemia samples and two cell lines, aiming to understand stroma-mediated signaling modulation in response to the targeted agents temsirolimus (MTOR), ABT737 (BCL2/BCL-XL), and Nutlin-3a (MDM2), and to identify the effective combination therapy targeting acute myeloid leukemia in the context of the leukemia microenvironment.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties. Recently we have shown that TGF-β1 pretreatment in vitro protects against 1-methyl-4-phenylpyridinium (MPP)-induced dopaminergic neuronal loss that characterizes in Parkinson's disease (PD). Herein, we aimed to demonstrate that TGF-β1 administration in vivo after MPP toxicity has neuroprotection that is achieved by a mediation of microglia.

View Article and Find Full Text PDF

Background/aims: Regulatory T (Treg) cells have been associated with neuroprotection by inhibiting microglial activation in animal models of Parkinson's disease (PD), a progressive neurodegenerative disease characterized by dopaminergic neuronal loss in the nigrostriatal system. Herein, we show that Treg cells directly protect dopaminergic neurons against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity via an interaction between the two transmembrane proteins CD47 and signal regulatory protein α (SIRPA).

Methods: Primary ventral mesencephalic (VM) cells or VM neurons were pretreated with Treg cells before MPP+ treatment.

View Article and Find Full Text PDF

ASH2L encodes a trithorax group protein that is a core component of all characterized mammalian histone H3K4 methyltransferase complexes, including mixed lineage leukemia (MLL) complexes. ASH2L protein levels in primary leukemia patient samples have not yet been defined. We analyzed ASH2L protein expression in 511 primary AML patient samples using reverse phase protein array (RPPA) technology.

View Article and Find Full Text PDF

T helper (Th)17 cells, a subset of CD4 T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP)-induced PD models.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) inhibitor erlotinib has been shown to induce complete remission of acute myeloid leukemia (AML) in two patients with concurrent lung cancer and raised attention for a role of EGFR in AML whereas a recent phase II clinical study with gefitinib in AML demonstrated a negative result on the outcome. However, from several studies, EGFR expression in AML is poorly defined and the role of EGFR in AML remains unclear. Herein, we report the results of EGFR expression in AML of large cohorts of adult and pediatric AML patients with the data of total protein and phosphorylation levels of EGFR.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA.

View Article and Find Full Text PDF

mTOR activation leads to enhanced survival signaling in acute myeloid leukemia (AML) cells. The active-site mTOR inhibitors (asTORi) represent a promising new approach to targeting mTOR in AKT/mTOR signaling. MLN0128 is an orally-administered, second-generation asTORi, currently in clinical development.

View Article and Find Full Text PDF