It is often difficult to obtain adequate tissue for genomic study from distant metastases for assessment of targeted therapy in colorectal carcinomas. The study aims to explore the genomic differences between matched distant metastatic colorectal carcinomas (mCRC) and primary carcinoma using surgical specimens of both with adequate tissue. Thirty-four paired primary and distant metastatic colorectal carcinoma samples (liver, ovary, and lung) were obtained from surgical excisions (not small biopsies) and are microsatellite stable.
View Article and Find Full Text PDFSMARCA4-deficient non-small cell carcinoma is an aggressive neoplasm with poor outcome. Several studies have highlighted its immunochemistry, pathophysiology, and underlying mechanisms, but studies of its definite treatment are few. Here, we report on a 69-year-old male with heterogenous pathological presentations of SMARCA4-deficient non-small cell carcinoma.
View Article and Find Full Text PDFA characteristic of cytochrome P450 (CYP) enzymes is their ability to generate HO, either directly or indirectly via superoxide anion, a reaction referred to as "NADPH oxidase" activity. HO production by CYPs can lead to the accumulation of cytotoxic reactive oxygen species which can compromise cellular functioning and contribute to tissue injury. Herein we determined if form selective CYP inhibitors could distinguish between the activities of the monooxygenase and NADPH oxidase activities of rat recombinant CYP1A2, CYP2E1, CYP3A1 and CYP3A2 and CYP1A1/2-enriched β-naphthoflavone-induced rat liver microsomes, CYP2E1-enriched isoniazide-induced rat liver microsomes and CYP3A subfamily-enriched dexamethasone-induced rat liver microsomes.
View Article and Find Full Text PDFAberrant metabolism has been proposed as one of the emerging hallmarks of cancer. However, the interplay between metabolic disorders and cancer metastasis remains to be defined. To explore the sophisticated metabolic processes during metastatic progression, we analyzed differentially expressed metabolic genes during the epithelial-mesenchymal transition (EMT) of lung cancer cells and defined the EMT-associated metabolic gene signature in lung adenocarcinoma patients.
View Article and Find Full Text PDFBackground: The clinical utility of comprehensive genomic profiling (CGP) for guiding treatment has gradually become the standard-of-care procedure for colorectal carcinoma (CRC). Here, we comprehensively assess emerging targeted therapy biomarkers using CGP in primary CRC.
Methods: A total of 575 primary CRCs were sequenced by ACTOnco® assay for genomic alterations, tumour mutational burden (TMB), and microsatellite instability (MSI).
Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development.
View Article and Find Full Text PDFBackground: Breast cancers are heterogeneous with variable clinical courses and treatment responses.
Objective: We sought to evaluate dynamic changes in the molecular landscape of HER2-negative tumors treated with chemotherapy and anti-angiogenic agents.
Patients And Methods: Newly diagnosed HER2-negative breast cancer patients received low-dose sunitinib or bevacizumab prior to four 2-weekly cycles of dose-dense doxorubicin and cyclophosphamide.
Cytotoxic blistering agents such as sulfur mustard and nitrogen mustard (HN2) were synthesized for chemical warfare. Toxicity is due to reactive chloroethyl side chains that modify and damage cellular macromolecules including DNA and proteins. In response to DNA damage, cells initiate a DNA damage response directed at the recruitment and activation of repair-related proteins.
View Article and Find Full Text PDFCombined hepatocellular cholangiocarcinoma (cHCC-CC) is a rare subtype of primary liver malignancy characterized by aggressive behavior and poor prognosis. Radial surgical resection is the standard curative treatment. However, effective therapeutic options for recurrent or metastatic cHCC-CC are still lacking, mainly because of an insufficient understanding of the molecular and genomic alterations of cHCC-CC, preventing the discovery of specialized targeting therapy.
View Article and Find Full Text PDFBackground: Due to the difficulties in early diagnosing and treating hepatocellular carcinoma (HCC), prognoses for patients remained poor in the past decade. In this study, we established a screening model to discover novel prognostic biomarkers in HCC patients.
Methods: Candidate biomarkers were screened by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analyses of five HCC normal (N)/tumor (T) paired tissues and preliminarily verified them through several in silico database analyses.
Background: Chemotherapy is currently one of the most effective treatments for advanced breast cancer. Anti-microtubule agents, including taxanes, eribulin and vinca-alkaloids are one of the primary major anti-breast cancer chemotherapies; however, chemoresistance remains a problem that is difficult to solve. We aimed to discover novel candidate protein targets to combat chemoresistance in breast cancer.
View Article and Find Full Text PDFCholesterol is the major component of lipid rafts. Squalene synthase (SQS) is a cholesterol biosynthase that functions in cholesterol biosynthesis, modulates the formation of lipids rafts and promotes lung cancer metastasis. In this study, we investigated the lipid raft-associated pathway of SQS in lung cancer.
View Article and Find Full Text PDFThe tumor microenvironment (TME) and metabolic reprogramming have been implicated in cancer development and progression. However, the link between TME, metabolism, and cancer progression in lung cancer is unclear. In the present study, we identified IMPAD1 from the conditioned medium of highly invasive CL1-5.
View Article and Find Full Text PDFMonoamine oxidases (MAOs) including MAOA and MAOB are enzymes located on the outer membranes of mitochondria, which are responsible for catalyzing monoamine oxidation. Recently, increased level of MAOs were shown in several cancer types. However, possible roles of MAOs have not yet been elucidated in the progression and prognosis of colorectal carcinoma (CRC).
View Article and Find Full Text PDFMustard vesicants, including sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) and nitrogen mustard (bis(2-chloroethyl)methylamine, HN2) are cytotoxic blistering agents synthesized for chemical warfare. Because they contain highly reactive electrophilic chloroethyl side chains, they readily react with cellular macromolecules like DNA forming monofunctional and bifunctional adducts. By targeting DNA, mustards can compromise genomic integrity, disrupt the cell cycle, and cause mutations and cytotoxicity.
View Article and Find Full Text PDFThe basic leucine zipper and the W2 domain-containing protein 1 (BZW1) plays a key role in the cell cycle and transcriptionally control the histone H4 gene during G1/S phase. Since cellular proliferation rates are frequently dysregulated in human cancers, we identified the characteristics of BZW1 in cancer cells and analyzed its prognostic value in lung cancer patients. By searching public databases, we found that high BZW1 expression was significantly correlated with poor survival rate in non-small cell lung cancer (NSCLC), especially in lung adenocarcinoma.
View Article and Find Full Text PDFCancer cells utilize altered bioenergetics to fuel uncontrolled proliferation and progression. At the core of bioenergetics, adenine nucleotides are the building blocks for nucleotide synthesis, energy transfer and diverse metabolic processes. Adenylate kinases (AK) are ubiquitous phosphotransferases that catalyze the conversion of adenine nucleotides and regulate the homeostasis of nucleotide ratios within cellular compartments.
View Article and Find Full Text PDFMetastasis remains the major cause of death from colon cancer. We intend to identify differentially expressed genes that are associated with the metastatic process and prognosis in colon cancer. ATP synthase epsilon subunit () gene was found to encode the mitochondrial FF ATP synthase subunit epsilon that was overexpressed in tumor cells compared to their normal counterparts, while other genes encoding the ATP synthase subunit were repressed in public microarray datasets.
View Article and Find Full Text PDFSeventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced lethality. None was toxic in the absence of UVA light.
View Article and Find Full Text PDFNitrogen mustard, mechlorethamine (bis(2-chloroethyl)methylamine; HN2), and sulfur mustard are potent vesicants that modify and disrupt cellular macromolecules including DNA leading to cytotoxicity and tissue injury. In many cell types, HN2 upregulates DNA damage signaling pathways including ataxia telangiectasia mutated (ATM), ataxia telangiectasia mutated- and Rad3-related (ATR) as well as DNA-dependent protein kinase (DNA-PK). In the present studies, we investigated crosstalk between the HN2-induced DNA damage response and cell cycle progression using human A549 lung epithelial cells.
View Article and Find Full Text PDFBackground: Adenylate kinase 4 (AK4) has been identified as a biomarker of metastasis in lung cancer. However, the impacts of AK4 on metabolic genes and its translational value for drug repositioning remain unclear.
Methods: Ingenuity upstream analyses were used to identify potential transcription factors that regulate the AK4 metabolic gene signature.
Linear furocoumarins, also known as psoralens, are clinically useful photo-activated pharmaceuticals employed to address hyperproliferative skin diseases. Seven diverse cytotoxic pharmacophores have been synthetically attached to 8-methoxypsoralen via a 5-amino functionality. The resulting unique set of compounds was evaluated for dark and light toxicity against PAM212 keratinocytes in culture.
View Article and Find Full Text PDFToxicol Appl Pharmacol
November 2018
NADH cytochrome b reductase mediates electron transfer from NADH to cytochrome b utilizing flavin adenine dinucleotide as a redox cofactor. Reduced cytochrome b is an important cofactor in many metabolic reactions including cytochrome P450-mediated xenobiotic metabolism, steroid biosynthesis and fatty acid metabolism, hemoglobin reduction, and methionine and plasmalogen synthesis. Using recombinant human enzyme, we discovered that cytochrome b5 reductase mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals.
View Article and Find Full Text PDF