Publications by authors named "Yi-Hsun Lin"

Due to a lack of appropriate image resolution, most ultrasound scanners are unable to sensitively discern the pulley tissues. To extensively investigate the properties of the A1 pulley system and the surrounding tissues for assessing trigger finger, a 30 MHz ultrasound system was implemented to perform in vitro experiments using the hypodermis, A1 pulley, and superficial digital flexor tendon (SDFT) dissected from cadavers. Ultrasound signals were acquired from both the transverse and sagittal planes of each tissue sample.

View Article and Find Full Text PDF

Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors.

View Article and Find Full Text PDF

The purpose was to identify the A1 pulley's exact location and thickness by comparing measurements from a clinical high-frequency ultrasound scanner system (CHUS), a customized high-frequency ultrasound imaging research system (HURS) and a digital caliper. Ten cadaveric hands were used. We explored the pulley by layers, inserted guide pins and scanned it with the CHUS.

View Article and Find Full Text PDF

Carpal tunnel syndrome (CTS) is typically diagnosed by physical examination or nerve conduction measurements. With these diagnostics however it is difficult to obtain anatomical information in the carpal tunnel. To further improve the diagnosis of CTS, an attempt using 30 MHz high-frequency ultrasound to noninvasively detect the local anatomical structures and the kinetic trajectory of the median nerve (MN) in the wrist was explored.

View Article and Find Full Text PDF

Bone fracture induces moderate inflammatory responses that are regulated by cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LO) for initiating tissue repair and bone formation. Only a handful of non-invasive techniques focus on monitoring acute inflammation of injured bone currently exists. In the current study, we monitored in vivo inflammation levels during the initial 2 weeks of the inflammatory stage after mouse bone fracture utilizing 50 MHz ultrasound.

View Article and Find Full Text PDF

A 50 MHz high-frequency ultrasound and analysis method were developed to further improve the in situ assessment of deposition and distribution of organic fouling on the polyvinylidene fluoride (PVDF) membranes. Measurements of fouling depositions were performed from PVDF membranes filtrated with aqueous humic acid solutions (HAS) of 2 and 4 ppm concentrations in a flat-sheet module. Ultrasound signals reflected from the PVDF membranes, following filtrations at various durations including 0, 5, 15, 30, 60, and 100 min, were acquired.

View Article and Find Full Text PDF

Conductive polymer composites, typically fabricated from a mix of conductive fillers and a polymer substrate, are commonly applied as bipolar plates in a fuel cell stack. Electrical conductivity is a crucial property that greatly depends on the distribution and orientation of the fillers. In this study, a 50-MHz ultrasound imaging system and analysis techniques capable of nondestructively assessing the properties of carbon fibers (CFs) in conductive polymer composites were developed.

View Article and Find Full Text PDF

An accurate and quantitative modality to assess the burn degree is crucial for determining further treatments to be properly applied to burn injury patients. Ultrasounds with frequencies higher than 20 MHz have been applied to dermatological diagnosis due to its high resolution and noninvasive capability. Yet, it is still lacking a substantial means to sensitively correlate the burn degree and ultrasonic measurements quantitatively.

View Article and Find Full Text PDF