Gold compounds, clusters, and nanoparticles are widely used as catalysts and therapeutic medicines; the interactions between gold and its ligands in these systems play important roles in their chemical properties and functionalities. In order to elucidate the nature of the chemical interactions between Au(I) and its ligands, herein we use several theoretical methods to study the chemical bonding in a variety of linear [AuX2](-) complexes, where X = halogen atoms (F, Cl, Br, I, At and Uus), H, OH, SH, OCH3, SCH3, CN and SCN. It is shown that the most important bonding orbitals in these systems have significant contributions from the Au sd hybridized atomic orbitals.
View Article and Find Full Text PDFLiF-ThF4 molten salt (MS) is the fuel for advanced MS reactors. Knowledge of the microscopic MS structure and dynamics is required for an understanding of the macroscopic physical and chemical properties of the MS phases. We have performed molecular dynamics simulations on LiF-ThF4 MS at different molar percentages (LiF/ThF4 = 20.
View Article and Find Full Text PDFWhile uranyl halide complexes [UO2(halogen)n](2-n) (n = 1, 2, 4) are ubiquitous, the tricoordinate species have been relatively unknown until very recently. Here photoelectron spectroscopy and relativistic quantum chemistry are used to investigate the bonding and stability of a series of gaseous tricoordinate uranyl complexes, UO2X3(-) (X = F, Cl, Br, I). Isolated UO2X3(-) ions are produced by electrospray ionization and observed to be highly stable with very large adiabatic electron detachment energies: 6.
View Article and Find Full Text PDF