Zhongguo Shi Yan Xue Ye Xue Za Zhi
June 2016
Objective: To investigate the clinical significance of bone marrow morphological differences in the differential diagnosis of megaloblastic anemia (MM) and refractory anemia (R4).
Methods: A total of 60 anemia patients selected from our hospital between April 2004 and April 2015 were divided into MA group (30 cases) and RA group (30 cases) in accordance with their clinical diagnosis. Clinical manifestations, results of bone marrow morphology test, blood examination, peripheral blood smear, erythroid megaloblastic variability rate and nucleated red blood cell level in the 2 groups were compared and analyzed.
The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries.
View Article and Find Full Text PDFThe polymer reference interaction site model theory is used to investigate the radial distribution function, potential of mean force, depletion force, and second virial coefficient in star polymer nanocomposite melts. The contact aggregation of nanoparticles for relatively weak nanoparticle-monomer attraction and the bridging aggregation of nanoparticles for very large nanoparticle-monomer attraction are observed. The star architecture can well suppress the organization states of direct contact and bridging structure for the moderate nanoparticle-monomer attraction, and promote the bridging-type organization for relatively large nanoparticle-monomer attraction.
View Article and Find Full Text PDFOur recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids.
View Article and Find Full Text PDFThe polymer reference interaction site model from integral equation theory is used to investigate the structure and effective interactions in polymer nanocomposite melts where strong nanoparticle-monomer interactions are principally considered in this work. For finite particle volume fraction, the compromise for the interference between polymers and nanoparticles results in an optimum particle volume fraction for nanoparticle dispersion in polymer melts. At constant particle volume fraction, the effects of degree of polymerization become insignificant when it reaches a threshold value, below which quantitative effects on the organization states of polymer nanocomposite melts are found and help nanoparticles to well disperse in polymer.
View Article and Find Full Text PDFThe recently proposed first-order mean spherical approximation (FMSA) [Y. Tang, J. Chem.
View Article and Find Full Text PDFBecause of the increasing interest in studying the phenomenon exhibited by charge-stabilized colloidal suspensions in confining geometry, we present a density functional theory (DFT) for a hard-core multi-Yukawa fluid. The excess Helmholtz free-energy functional is constructed by using the modified fundamental measure theory and Rosenfeld's perturbative method, in which the bulk direct correlation function is obtained from the first-order mean spherical approximation. To validate the established theory, grand canonical ensemble Monte Carlo (GCMC) simulations are carried out to determine the density profiles and surface excesses of multi-Yukawa fluid in a slitlike pore.
View Article and Find Full Text PDFIn this work, an integral equation approach to investigate the atactic polystyrene (aPS) melt based on polymer reference interaction site model (PRISM) theory is proposed. The intramolecular structure factors, required as input to PRISM theory, are obtained from the semiflexible chain model. With a novel coarse-graining procedure and the explicit-atom molecular-dynamics (MD) simulations for aPS, the parameters needed for the coarse-grained model are obtained by using an automatic simplex optimization.
View Article and Find Full Text PDFThe equation of state (EOS) of Duh and Mier-y-Terán for one Yukawa potential is expanded to two Yukawa potentials to describe the nonidealities of the charged lysozyme and alpha-chymotrypsin solutions. Instead of the classical DLVO theory, the attractive dispersion and double-layer repulsion interactions are represented by two Yukawa potentials, respectively. For the aqueous lysozyme solutions, the only adjustable dispersion energy parameter epsilon/k is regressed and the average deviation is 1.
View Article and Find Full Text PDFThe first-order mean spherical approximation (FMSA) theory proposed by Tang et al. [Fluid Phase Equilib., 134, 21(1997)] is applied for studying several typical Yukawa fluids, including attractive, repulsive, and multi-Yukawa cases.
View Article and Find Full Text PDFOn the basis of White's theory, an improved renormalization group (RG) theory is developed for chain bonding fluids inside the critical region. Outside the critical region, the statistical associating fluid theory based on the first-order mean sphere approximation [Fluid Phase Equilibria 171, 27 (2000)] is adopted and all the microscopic parameters are taken directly from its earlier application of real fluids. Inside the critical region, the RG transformation for long-range density fluctuation is derived in the k space, which illustrates explicitly the contributions from the mean-field term, the local density fluctuation, and the nonlocal density fluctuation.
View Article and Find Full Text PDFA new equation of state is proposed to correlate and predict the osmotic pressure data for aqueous bovine serum albumin (BSA) solutions with different NaCl concentrations and pH values with only one adjustable parameter. The Carnahan-Starling equation represents the contribution of the hard sphere repulsion to the osmotic pressure. The attractive dispersion and double-layer repulsion interactions are represented by two Yukawa potentials, respectively.
View Article and Find Full Text PDF