Objective: To investigate DNA methylation (DNAm) status of dickkopf-associated protein 1 (DKK-1) in ossified hip capsule synovium and serum among patients with ankylosing spondylitis (AS).
Methods: Western blot was applied to detect the level of DKK-1 protein expression in hip joint capsule tissues from four patients with AS as well as four patients with femoral neck fracture (FNF) caused by trauma as control. DKK-1 gene promoter methylation (GPM) was examined by methylation-specific polymerase chain reaction.
Solution-processable all-inorganic CsPbIBr perovskite holds great potential for pure red light-emitting diodes. However, the widely existing defects in this mixed halide perovskite markedly limit the efficiency and stability of present light-emitting diode devices. We here identify that intragrain Ruddlesden-Popper planar defects are primary forms of such defects in the CsPbIBr thin film owing to the lattice strain caused by inhomogeneous halogen ion distribution.
View Article and Find Full Text PDFThermochromic phosphors are intriguing materials for realizing thermochromic behaviors of light-emitting diodes. Here a highly luminescent and stable thermochromic phosphor based on one-dimensional Cu I (4-dimethylamino-1-ethylpyridinium) is reported. This unique ionic copper-iodine chain-based hybrid exhibits near-unity photoluminescence efficiency owing to the through-space charge-transfer character of relevant electronic transitions.
View Article and Find Full Text PDFAll-inorganic CsPbI perovskite is attractive for deep-red light-emitting diodes (LEDs) because of its excellent carrier mobility, high color purity, and solution processability. However, the high phase transition energy barrier of optically active CsPbI black phase hinders the fabrication of efficient and bright LEDs. Here, we report a novel α-BaF nanoparticle substrate-promoted solution-processable heteroepitaxial growth to overcome this hindrance and obtain high-quality optically active γ-CsPbI thin films, achieving efficient and bright deep-red LEDs.
View Article and Find Full Text PDFLead halide perovskite nanocrystals (PNCs) are emerging as promising light emitters to be actively explored for high color purity and efficient light-emitting diodes. However, the most reported lead halide perovskite nanocrystal light-emitting diodes (PNCLEDs) encountered issues of emission line width broadening and operation voltage elevating caused by the quantum confinement effect. Here, we report a new type of PNCLED using large-size CsPbBr PNCs overly exceeding the Bohr exciton diameter, achieving ultranarrow emission line width and rapid brightness rise around the turn-on voltage.
View Article and Find Full Text PDFMetal halide perovskites are promising semiconductors for next-generation light-emitting diodes (LEDs) due to their high luminance, excellent color purity, and handily tunable band gap. However, it remains a great challenge to develop perovskite LEDs (PeLEDs) with pure red emission at the wavelength of 630 nm. Herein, we report a spectrally stable and efficient pure red PeLED by employing sequential ligand post-treated CsPbI quantum dots (QDs).
View Article and Find Full Text PDFAll-inorganic cesium lead halide perovskite colloidal nanocrystals are attractive for next-generation light-emitting diodes because of their high color purity, but the nonradiative Auger recombination in perovskite nanocrystal film limits the efficiency and brightness of the fabricated devices. Here, we introduce a surface-engineering process to exchange the original long-chain oleic acid/oleylamine ligands by the cerium-tributylphosphine oxide hybrid ligands to suppress nonradiative Auger recombination in CsPbBr NC film for bright and low-efficiency roll-off light-emitting diodes. Using ultrafast transient absorption and time-resolved photoluminescence spectroscopy, we demonstrate that the hybrid ligand passivation can efficiently remove surface trap states to enhance radiative recombination and homogenize the exciton concentration to suppress nonradiative Auger recombination in the CsPbBr nanocrystal thin film.
View Article and Find Full Text PDFAll-inorganic lead halide perovskite nanocrystals (NCs) are potential candidates for fabricating high-performance light-emitting diodes (LEDs) owing to their precisely tunable bandgaps, high photoluminescence (PL) efficiency, and excellent color purities. However, the performance of pure red (630-640 nm) all-inorganic perovskite LEDs is still limited by the halide segregation-induced instability of the electroluminescence (EL) of mixed halide CsPbIBr NCs. Herein, we report an effective approach to improving the EL stability of pure red all-inorganic CsPbIBr NC-based LEDs via the passivation of potassium bromide on NCs.
View Article and Find Full Text PDFBipolar disorder (BD) affects a significant proportion of Taiwanese individuals (Weissman et al., 1996; Yang, Yeh, & Hwu, 2012). Psychotropic medications are typically the mainstay of treatment for BD, and there is an abundance of international research on biological etiology and medication options.
View Article and Find Full Text PDF