A self-driven electrochemical system (SDES) was utilized to treat anaerobic digestate wastewater, aiming to achieve wastewater resource utilization and energy generation. The efficiencies of pollutant removal, resource recovery, and energy production were enhanced by adjusting device parameters (anode area, external resistance, and electrode spacing). The high pollutant removal rates and struvite purity were achieved with the magnesium anode area of 15 cm, external resistance of 10 Ω, and electrode spacing of 10 cm.
View Article and Find Full Text PDFA series of novel 6-(4-(4-methylpiperazin-1-yl)phenyl)-1H-benzo[d]imidazole-based p21-activited kinase 4 (PAK4) inhibitors were designed and synthesized based on the structure of lead compound GNE-2861 and that of anticancer inhibitors reported in our previous studies. All target compounds so designed were preliminarily screened in vitro for anti-tumor potency through kinase inhibitory assays and MTT assays, which revealed that most compounds exhibited significant inhibitory effects on PAK4 enzyme as well as prominent antiproliferative activities against four cancer cell models (A549, NCI-H1975, MDA-MB-231 and SK-BR-3) and low damage to healthy cells. In particular, the hit compound 12i was identified as the most effective and rather selective compound both at the enzyme and cellular level.
View Article and Find Full Text PDFArrhythmogenesis in acute myocardial infarction (MI) is associated with depolarization of resting membraine potential (RMP) and decrease of inward rectifier potassium current (IK1) in cardiomyocytes. However, clinical anti-arrhythmic agents that primarily act on RMP by enhancing the IK1 channel are not currently available. We hypothesized that zacopride, a selective and moderate agonist of the IK1/Kir2.
View Article and Find Full Text PDFAtomic force microscopy (AFM) was used to characterize the surface damage (nanoindentations) effect on the chemical durability of glass surfaces (silica and soda-lime silicate glasses, WG). In basic solutions, an enhanced dissolution rate is reported and quantified at indentation sites (+10.5 nm/h and +52 nm/h for silica and WG, respectively) whereas none was observed once the indented surfaces were thermally annealed at 0.
View Article and Find Full Text PDF