Publications by authors named "Yi-De Chuang"

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the scattering plane in underdoped BiSrCaCuO.

View Article and Find Full Text PDF

Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle.

View Article and Find Full Text PDF

Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form.

View Article and Find Full Text PDF

Investigation of Li metal and ionic compounds through experimental and theoretical spectroscopy has been of tremendous interest due to their prospective applications in Li-metal and Li-ion batteries. Li K-edge soft X-ray absorption spectroscopy (sXAS) provides the most direct spectroscopic characterization; unfortunately, due to the low core-level energy and the highly reactive surface, Li-K sXAS of Li metal has been extremely challenging, as evidenced by many controversial reports. Here, through controlled and ultra-high energy resolution experiments of two kinds of prepared samples, we report the intrinsic Li-K sXAS of Li-metal that displays a prominent leading peak that has not been revealed before.

View Article and Find Full Text PDF

Detectors with microchannel plates (MCPs) provide unique capabilities to detect single photons with high spatial (<10 µm) and timing (<25 ps) resolution. Although this detection technology was originally developed for applications with low event rates, recent progress in readout electronics has enabled their operation at substantially higher rates by simultaneous detection of multiple particles. In this study, the potential use of MCP detectors with Timepix readout for soft X-ray imaging and spectroscopic applications where the position and time of each photon needs to be recorded is investigated.

View Article and Find Full Text PDF

The recent proposal of antidoping scheme breaks new ground in conceiving conversely functional materials and devices; yet, the few available examples belong to the correlated electron systems. Here, we demonstrate both theoretically and experimentally that the main group oxide BaBiO is a model system for antidoping using oxygen vacancies. The first-principles calculations show that the band gap systematically increases due to the strongly enhanced Bi-O breathing distortions away from the vacancies and the annihilation of Bi 6/O 2 hybridized conduction bands near the vacancies.

View Article and Find Full Text PDF

Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic properties of magnetically alloyed Sm_{1-x}M_{x}B_{6} (M=Ce, Eu), using angle-resolved photoemission spectroscopy and complementary characterization techniques. Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly modified samples with up to 30% Sm substitution and with an antiferromagnetic ground state in the case of Eu doping.

View Article and Find Full Text PDF

We have successfully fabricated high quality single crystalline LaSrMnO (LSMO) film in the freestanding form that can be transferred onto silicon wafer and copper mesh support. Using soft x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopy in transmission and reflection geometries, we demonstrate that the x-ray emission from Mn 3s-2p core-to-core transition (3sPFY) seen in the RIXS maps can represent the bulk-like absorption signal with minimal self-absorption effect around the Mn L-edge. Similar measurements were also performed on a reference LSMO film grown on the SrTiO substrate and the agreement between measurements substantiates the claim that the bulk electronic structures can be preserved even after the freestanding treatment process.

View Article and Find Full Text PDF

The characterization of oxidized oxygen states through high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) has become a crucial approach for studying the oxygen redox activities in high-energy battery cathodes. However, this approach has been recently challenged due to the concern of irradiation damage. Here we revisited a typical Li-rich electrode, LiNiMnCoO, in both lithiated and delithiated states and evaluated the X-ray irradiation effect in the lengthy mRIXS experiments.

View Article and Find Full Text PDF

The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic x-ray scattering (RIXS) spectroscopy. With ∼70  meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in the RIXS spectra. Using resonance dependence and the closed form for RIXS cross section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.

View Article and Find Full Text PDF

The optical design of a Hettrick-Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used.

View Article and Find Full Text PDF

The evolving oxygen state plays key roles in the performance and stability of high-energy batteries involving oxygen redox reactions. Here, high-efficiency full energy range O mapping of resonant inelastic X-ray scattering (mRIXS) was collected from O (O) and CO (O with strong covalency) molecules and compared directly with LiO (O) and the oxidized oxygen state in representative Na/Li-ion battery electrodes. Our results confirm again that the critical mRIXS feature around the 523.

View Article and Find Full Text PDF

The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na[LiMn]O and compare it with Na[MgMn]O.

View Article and Find Full Text PDF

Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity.

View Article and Find Full Text PDF

Uranium compounds can manifest a wide range of fascinating many-body phenomena, and are often thought to be poised at a crossover between localized and itinerant regimes for 5f electrons. The antiferromagnetic dipnictide USb has been of recent interest due to the discovery of rich proximate phase diagrams and unusual quantum coherence phenomena. Here, linear-dichroic X-ray absorption and elastic neutron scattering are used to characterize electronic symmetries on uranium in USb and isostructural UBi.

View Article and Find Full Text PDF

Recent debates on the oxygen redox behaviors in battery electrodes have triggered a pressing demand for the reliable detection and understanding of nondivalent oxygen states beyond conventional absorption spectroscopy. Here, enabled by high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) coupled with first-principles calculations, we report distinct mRIXS features of the oxygen states in LiO, LiCO, and especially, LiO, which are successfully reproduced and interpreted theoretically. mRIXS signals are dominated by valence-band decays in LiO and LiCO.

View Article and Find Full Text PDF

The demand of sustainable power supply requires high-performance cost-effective energy storage technologies. Here we report a high-rate long-life low-cost sodium-ion battery full-cell system by innovating both the anode and the electrolyte. The redox couple of manganese(I/II) in Prussian blue analogs enables a high-rate and stable anode.

View Article and Find Full Text PDF

Endohedral metallofullerenes, formed by encaging Gd inside fullerenes like C, can exhibit enhanced proton relaxitivities compared with other Gd-chelates, making them the promising contrast agents for magnetic resonance imaging (MRI). However, the underlying key energy scales of Gd Sc N@C (x  =  1-3) remain unclear. Here, we carry out resonant inelastic x-ray scattering (RIXS) experiments on Gd Sc N@C at Gd N -edges to directly study the electronic structure and spin flip excitations of Gd 4f electrons.

View Article and Find Full Text PDF

An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory.

View Article and Find Full Text PDF

Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components.

View Article and Find Full Text PDF

Cobalt-based catalysts are widely used to produce liquid fuels through the Fischer-Tropsch (FT) reaction. However, the cobalt nanocatalysts can exhibit intriguing size-dependent activity whose origin remains heavily debated. To shed light on this issue, the electronic structures of cobalt nanoparticles with size ranging from 4 to 10 nm are studied using soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectroscopies.

View Article and Find Full Text PDF

In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter.

View Article and Find Full Text PDF

We report a time-resolved study of the ultrafast dynamics of the magnetic moments formed by the [Formula: see text] states in Sr2IrO4 by directly probing the localized iridium 5d magnetic state through resonant x-ray diffraction. Using optical pump-hard x-ray probe measurements, two relaxation time scales were determined: a fast fluence-independent relaxation is found to take place on a time scale of 1.5 ps, followed by a slower relaxation on a time scale of 500 ps-1.

View Article and Find Full Text PDF

We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel.

View Article and Find Full Text PDF

LiFePO4 is a battery cathode material with high safety standards due to its unique electronic structure. We performed systematic experimental and theoretical studies based on soft X-ray emission, absorption, and hard X-ray Raman spectroscopy of LixFePO4 nanoparticles and single crystals. The results clearly show a non-rigid electron-state reconfiguration of both the occupied and unoccupied Fe-3d and O-2p states during the (de)lithiation process.

View Article and Find Full Text PDF