J Phys Condens Matter
November 2022
Mobility edge (ME), a critical energy separating localized and extended states in spectrum, is a central concept in understanding localization physics. However, there are few models with exact MEs, and their presences are fragile against perturbations. In the paper, we generalize the Aubry-André-Harper model proposed in (Ganeshan2015146601) and recently realized in (An2021040603), by introducing a relative phase in the quasiperiodic potential.
View Article and Find Full Text PDFWe study the entanglement properties of non-Hermitian free fermionic models with translation symmetry using the correlation matrix technique. Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems. For any one-dimensional one-band system, we prove that each Fermi point of the system contributes exactly 1/2 to the coefficientof the logarithmic correction.
View Article and Find Full Text PDFReaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods.
View Article and Find Full Text PDFSpontaneous emission lifetime orientation distributions of a two-level quantum emitter in metallic nanorod structures are theoretically investigated by the rigorous electromagnetic Green function method. It was found that spontaneous emission lifetime strongly depended on the transition dipole orientation and the position of the emitter. The anisotropic factor defined as the ratio between the maximum and minimum values of the lifetimes along different dipole orientations can reach up to 10(3).
View Article and Find Full Text PDFWe investigate the light emission characteristics for single two level quantum dot (QD) in a realistic photonic crystal (PC) L3 cavity based upon the local coupling strength between the QD and cavity together with the Green's function in which the propagation function related to the position of the detector is taken into account. We find for a PC cavity that the line shape of the propagation function in frequency domain is identical to that of the cavity and independent on the detector's position. We confirm that this identity is not influenced by the horizontal decay of the cavity.
View Article and Find Full Text PDFWe investigate the enhancement of the resonance energy transfer rate between donor and acceptor associated by the surface plasmons of the Ag nanorods on a SiO2 substrate. Our results for a single nanorod with different cross sections reveal that the cylinder nanorod has the strongest ability to enhance the resonance energy transfer rate. Moreover, for donor and acceptor with nonparallel polarization directions, we propose simple V-shaped nanorod structures which lead to the remarkable resonance energy transfer enhancement that is ten times larger than that by the single nanorod structure.
View Article and Find Full Text PDFThe quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximatively proportional to the slab thickness.
View Article and Find Full Text PDF