Cp*Rh(III)-catalyzed nitro-directed C-H alkylation/alkenylation of nitroarenes has been reported for the first time. This protocol is associated with the features of high efficiency, broad substrate scope, and good functional group compatibility. Additionally, gram-scale experiments and synthetic applications proved the practicability of the method.
View Article and Find Full Text PDFRh (III)-catalyzed dienylation and cyclopropylation of 1,2,3-benzotriazinones with alkylidenecyclopropanes (ACPs) has been achieved. Different from the previous reports of 1,2,3-benzotriazinones, the triazinone ring remained intact in this C-H bond functionlization reaction. Also, the denitrogenative cyclopropylation could also be realized by changing the reaction temperature.
View Article and Find Full Text PDFTwo categories of tetrasubstituted phenols were prepared via the cycloaddition reaction of vinyl sulfoxonnium ylides with cyclopropenones in a switchable manner. Copper carbenoid was proposed as the active intermediate in the process of 2,3,4,5-tetrasubstituted phenols formation, while 2,3,5,6-tetrasubstituted phenols were generated via the direct [3 + 3] annulation of vinyl sulfoxonnium ylides with cyclopropenones under metal-free conditions. Further synthetic applications were also demonstrated.
View Article and Find Full Text PDFThe indole-substituted trifluoromethyl sulfonium ylide has been developed via Cp*Rh(III)-catalyzed diazo-carbenoid addition to trifluoromethylthioether and is the first example of an Rh(III)-catalyzed diazo-carbenoid addition reaction with trifluoromethylthioether. Several kinds of indole-substituted trifluoromethyl sulfonium ylide were constructed under mild reaction conditions. The reported method exhibited high functional group compatibility and broad substrate scope.
View Article and Find Full Text PDFRh(III)-catalyzed C-H/N-H annulation and C-H allylation of phenylindazolones have been realized by employing 5-methylene-1,3-dioxan-2-one and 4-vinyl-1,3-dioxolan-2-one as scalable cross-coupling partners, delivering functionalized indazolone fused heterocycles and branched and linear allyl indazolones respectively in moderate to high yield. These divergent synthesis protocols showcase mild conditions, broad substrate scope, and high functional-group compatibility. In addition, scale-up synthesis and preliminary mechanistic exploratory were also accomplished.
View Article and Find Full Text PDFHerein, we report a Rh(III)-catalyzed C4-selective activation of indoles by using iodonium ylides as carbene precursors. This protocol proceeded under redox neutral reaction conditions and provided important coupling products with good tolerance of functional groups and high yields. In addition, one-pot synthesis and scale-up and mechanistic studies were also conducted.
View Article and Find Full Text PDFA tandem rhodium(III)-catalyzed system was established to access 3,4-dihydroisoquinolin-1(2)-one by coupling of -methoxy-3-methylbenzamide with 2-methylidenetrimethylene carbonate. This one-pot synthesis protocol processed smoothly under mild reaction conditions. Moreover, a total of 28 examples, broad substrate scope, and high functional-group compatibility were observed.
View Article and Find Full Text PDFA rhodium(III)-catalyzed C-H allylation of (hetero)arenes by using 2-methylidenetrimethylene carbonate as an efficient allylic source has been developed for the first time. Five different directing groups including oxime, -nitroso, purine, pyridine, and pyrimidine were compatible, delivering various branched allylarenes bearing an allylic hydroxyl group in moderate to excellent yields.
View Article and Find Full Text PDF