Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 μg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR.
View Article and Find Full Text PDFTwo new sesquiterpenoids, flammupin A () and flammupin B (), along with two known compounds, enokipodin C () and 5,5'-dibuthoxy-2,2'-bifuran () were obtained from , an endophytic fungus isolated from the roots of Maxim. The structures were elucidated by the combination of HR-ESI-MS, NMR, and ECD analyses. Compound exhibited moderate to potent cytotoxicity against A549, HeLa, and SMMC-7721 cells with IC values ranged from 3.
View Article and Find Full Text PDFMotivated by the progress on shortcuts to adiabaticity, we propose three schemes for speeding up (fractional) stimulated Raman adiabatic passage, and achieving rapid and non-adiabatic creation and transfer of maximal coherence in a triple-quantum-dot system. These different but relevant protocols, designed from counter-diabatic driving, dress-state method, and resonant technique, require their own pumping fields, applied gate voltages and varying tunneling couplings between two spatially separated dots. Such fast and reliable shortcuts not only allow for feasibly experimental realization in solid-state architectures but also may have potential applications in quantum information processing and quantum control.
View Article and Find Full Text PDFAccurate control of a quantum system is a fundamental requirement in many areas of modern science ranging from quantum information processing to high-precision measurements. A significantly important goal in quantum control is preparing a desired state as fast as possible, with sufficiently high fidelity allowed by available resources and experimental constraints. Stimulated Raman adiabatic passage (STIRAP) is a robust way to realize high-fidelity state transfer but it requires a sufficiently long operation time to satisfy the adiabatic criteria.
View Article and Find Full Text PDFFast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5.
View Article and Find Full Text PDFDynamic monitoring of stimulus-evoked inner neural response is important for functional validation of stimulation protocols of retinal prosthetic devices. In this paper, we demonstrate label-free intrinsic optical signal (IOS) imaging of electrically stimulated inner neural response in freshly isolated mouse retinas. While single-pulse stimulation evoked rapid IOS within 20 ms, pulse-train stimulation indicated that the fast IOS response can follow frequency stimulation up to at least 8 Hz.
View Article and Find Full Text PDFRetinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues.
View Article and Find Full Text PDFWe demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.
View Article and Find Full Text PDFFunctional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported.
View Article and Find Full Text PDFThe purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL).
View Article and Find Full Text PDFSimultaneous monitoring of many functioning β-cells is essential for understanding β-cell dysfunction as an early event in the progression to diabetes. Intrinsic optical signal (IOS) imaging has been shown to allow high resolution detection of stimulus-evoked physiological responses in the retina and other neural tissues. In this paper, we demonstrate the feasibility of using IOS imaging for functional examination of insulin secreting INS-1 cells, a popular model for investigating diabetes associated β-cell dysfunction.
View Article and Find Full Text PDFUnderstanding of visual signal processing can benefit from simultaneous measurement of different types of retinal neurons working together. In this Letter, we demonstrate that intrinsic optical signal (IOS) imaging of frog retina slices allows simultaneous observation of stimulus-evoked responses propagating from the photoreceptors to the inner neurons. High-resolution imaging revealed robust IOSs at the photoreceptor, the inner plexiform, and the ganglion cell layers.
View Article and Find Full Text PDF