Publications by authors named "Yi-Bing Ouyang"

The cellular and molecular mechanisms regulating postinjury neurogenesis in the adult hippocampus remain undefined. We have previously demonstrated that preinjury treatment with anti-microRNA (miR)-181a preserved neurons and prevented astrocyte dysfunction in the hippocampal cornu ammonis-1 (CA1) following transient forebrain ischemia. In the present study, we assessed postinjury treatment with anti-miR-181a on recovery of CA1 neurons following transient forebrain ischemia in rats.

View Article and Find Full Text PDF

Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia.

View Article and Find Full Text PDF

The effects of high dose gamma radiation on brain tissue are poorly understood, with both limited and major changes reported. The present study compared the effects of gamma irradiation on the expression of interneuron markers within the hippocampal cornu ammonis 1 (CA1) region with expression in control matched rats. This area was chosen for study because of its well-characterized circuitry.

View Article and Find Full Text PDF

Whether the effect of miR-181a is sexually dimorphic in stroke is unknown. Prior work showed protection of male mice with miR-181a inhibition. Estrogen receptor-α (ERα) is an identified target of miR181 in endometrium.

View Article and Find Full Text PDF

Studies on the effects of gamma radiation on brain tissue have produced markedly differing results, ranging from little effect to major pathology, following irradiation. The present study used control-matched animals to compare effects on a well characterized brain region following gamma irradiation. Male Sprague-Dawley rats were exposed to 60 Gy of whole brain gamma radiation and, after 24-hours, 48-hours, and one-week periods, hippocampal brain slices were isolated and measured for anatomical and physiological differences.

View Article and Find Full Text PDF

Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury.

View Article and Find Full Text PDF

Neurons in the cornu ammonis 1 (CA1) region of the hippocampus are vulnerable to cerebral ischemia, while dentate gyrus (DG) neurons are more resistant. This effect is mediated by local astrocytes, and may reflect differences in subregional hippocampal expression of miR-29a. We investigated the role of miR-29a on survival of hippocampal astrocytes cultured selectively from CA1 and DG in response to glucose deprivation (GD).

View Article and Find Full Text PDF

Background And Purpose: Interleukin (IL)-4 protects from middle cerebral artery occlusion in male mice. Females generally show less injury in response to the same ischemic challenge, but the underlying mechanisms are not fully understood. We tested the importance of IL-4 in female protection using IL-4 knockout (KO) mice.

View Article and Find Full Text PDF

MicroRNA-29b (miR-29b) is involved in regulating ischemia process, but the molecular mechanism is unclear. In this work, we explored the function of miR-29b in cerebral ischemia. The level of miR-29b in white blood cells was evaluated in patients and mice after ischemic stroke.

View Article and Find Full Text PDF

Background: Sevoflurane and propofol are widely used anesthetics for surgery. Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid. MicroRNAs (miRNAs) regulate neural function by altering protein expression.

View Article and Find Full Text PDF

Background And Purpose: MicroRNA (miR)-200c increases rapidly in the brain after transient cerebral ischemia but its role in poststroke brain injury is unclear. Reelin, a regulator of neuronal migration and synaptogenesis, is a predicted target of miR-200c. We hypothesized that miR-200c contributes to injury from transient cerebral ischemia by targeting reelin.

View Article and Find Full Text PDF

miR-181 has deleterious effects on stroke outcome, and reducing miR-181a levels prior to middle cerebral artery occlusion (MCAO) was shown previously to be protective. Here we tested the effect of post-ischemic treatment with miR-181a antagomir by intracerebroventricular and intravenous routes of administration on infarct size, neurological outcome, inflammatory response and long term behavioral outcome. Post-treatment with miR-181a antagomir significantly reduced infarction size, improved neurological deficits and reduced NF-κB activation, numbers of infiltrating leukocytes and levels of Iba1.

View Article and Find Full Text PDF

Astrocytes have been shown to protect neurons from delayed neuronal death and increase their survival in cerebral ischemia. One of the main mechanisms of astrocyte protection is rapid removal of excess glutamate from synaptic sites by astrocytic plasma membrane glutamate transporters such as GLT-1/EAAT-2, reducing excitotoxicity. Astrocytic mitochondrial function is essential for normal GLT-1 function.

View Article and Find Full Text PDF

The BCL-2 family is centrally involved in the mechanism of cell death after cerebral ischemia. It is well known that the proteins of the BCL-2 family are key regulators of apoptosis through controlling mitochondrial outer membrane permeabilization. Recent findings suggest that many BCL-2 family members are also directly involved in controlling transmission of Ca(2+) from the endoplasmic reticulum (ER) to mitochondria through a specialization called the mitochondria-associated ER membrane (MAM).

View Article and Find Full Text PDF

Significance: Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation.

View Article and Find Full Text PDF

The highly evolutionarily conserved 70 kDa heat shock protein (HSP70) family was first understood for its role in protein folding and response to stress. Subsequently, additional functions have been identified for it in regulation of organelle interaction, of the inflammatory response, and of cell death and survival. Overexpression of HSP70 family members is associated with increased resistance to and improved recovery from cerebral ischemia.

View Article and Find Full Text PDF

Astrocytes have been shown to protect neurons and increase their survival in many pathological settings. Manipulating astrocyte functions is thus an important strategy to enhance neuronal survival and improve outcome following cerebral ischemia. Increasing evidence supports the involvement of microRNAs (miRNA), some of them being astrocyte-enriched, in the regulation of cerebral ischemia.

View Article and Find Full Text PDF

Following transient forebrain ischemia, astrocytes play a key role in determining whether or not neurons in the hippocampal CA1 sector go on to die in a delayed fashion. MicroRNAs (miRNAs) are a novel class of RNAs that control gene expression at the post-transcriptional level and the miR-29 family is highly expressed in astrocytes. In this study we assessed levels of miR-29 in hippocampus following forebrain ischemia and found that after transient forebrain ischemia and short periods of reperfusion, miR-29a significantly increased in the resistant dentate gyrus, but decreased in the vulnerable CA1 region of the hippocampus.

View Article and Find Full Text PDF

Stroke is one of the leading causes of death and disability worldwide. Because stroke is a multifactorial disease with a short therapeutic window many clinical stroke trials have failed and the only currently approved therapy is thrombolysis. MicroRNAs (miRNA) are endogenously expressed noncoding short single-stranded RNAs that play a role in the regulation of gene expression at the post-transcriptional level, via degradation or translational inhibition of their target mRNAs.

View Article and Find Full Text PDF

It is commonly believed that sustained elevations in the mitochondrial matrix Ca(2+) concentration are a major feature of the intracellular cascade of lethal events during cerebral ischemia. The physical association between the endoplasmic reticulum (ER) and mitochondria, known as the mitochondria-associated ER membrane (MAM), enables highly efficient transmission of Ca(2+) from the ER to mitochondria under both physiological and pathological conditions. Molecular chaperones are well known for their protective effects during cerebral ischemia.

View Article and Find Full Text PDF

Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain.

View Article and Find Full Text PDF

MicroRNAs (miRNA) are short (~22nt) single stranded RNAs that downregulate gene expression. Although recent studies indicate extensive miRNA changes in response to ischemic brain injury, there is currently little information on the roles of specific miRNAs in this setting. Heat shock proteins (HSP) of the HSP70 family have been extensively studied for their multiple roles in cellular protection, but there is little information on their regulation by miRNAs.

View Article and Find Full Text PDF

Mitochondria are central to the execution of apoptosis, and the Bcl-2 protein family of pro- and anti-apoptotic proteins interacts with mitochondria to regulate apoptosis. Using bioinformatics we predicted that miR-181, a microRNA expressed in brain, could target the 3'UTRs of Bcl-2 family members Bcl-2-L11/Bim, Mcl-1, and Bcl-2. Using the luciferase reporter assay we confirmed these targets.

View Article and Find Full Text PDF

Background And Purpose: Stroke causes brain injury with activation of an inflammatory response that can contribute to injury. We tested the hypothesis that the anti-inflammatory cytokine interleukin-4 (IL-4) reduces injury after stroke using IL-4 knockout (KO) adult male mice.

Methods: IL-4 KO and wild-type mice were subjected to transient middle cerebral artery occlusion.

View Article and Find Full Text PDF