Publications by authors named "Yi Xianwen"

Carbon nanodots (CNDs) are a new type of nanomaterial with a size of less than 10 nanometers and excellent biocompatibility, widely used in fields such as biological imaging, transmission, diagnosis, and drug delivery. However, its potential and mechanism to mediate endothelial inflammation have yet to be explored. Here, we report that the uptake of CNDs by EA.

View Article and Find Full Text PDF

Stem/progenitor cell therapy is a promising treatment option for patients with type 1 diabetes (T1D) a disease characterized by autoimmune destruction of pancreatic β cells. Actively injecting cells into an organ is one option for cell delivery, but in the pancreas, this contributes to acute inflammation and pancreatitis. We employed a patch grafting approach to transplant biliary tree stem cells/progenitor cells (BTSC) onto the surface of the pancreas in diabetic mice.

View Article and Find Full Text PDF

Patch grafting, a novel strategy for transplantation of stem/progenitor organoids into porcine livers, has been found successful also for organoid transplantation into other normal or diseased solid organs in pigs and mice. Each organoid contained ∼100 cells comprised of biliary tree stem cells (BTSCs), co-hepato/pancreatic stem/progenitors, and partnered with early lineage stage mesenchymal cells (ELSMCs), angioblasts and precursors to endothelia and stellate cells. Patch grafting enabled transplantation into livers or pancreases of ≥10 (pigs) or ≥10 (mice) organoids/patch.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidized low density lipoprotein (Ox-LDL) is linked to inflammation and atherosclerosis, a major global health issue.
  • Carbon nanodots (CNDs), a new type of nanomaterial, show promise in reducing Ox-LDL's harmful effects on vascular cells by inhibiting monocyte adhesion and the expression of interleukin-8 (IL-8).
  • CNDs may exert their anti-inflammatory effects by scavenging reactive oxygen species, offering potential therapeutic benefits in managing cardiovascular diseases linked to Ox-LDL.
View Article and Find Full Text PDF

Epithelial cell therapies have been at an impasse because of inefficient methods of transplantation to solid organs. Patch grafting strategies were established enabling transplantation of ≥10 organoids/patch of porcine GFP+ biliary tree stem/progenitors into livers of wild type hosts. Grafts consisted of organoids embedded in soft (~100 Pa) hyaluronan hydrogels, both prepared in serum-free Kubota's Medium; placed against target sites; covered with a silk backing impregnated with more rigid hyaluronan hydrogels (~700 Pa); and use of the backing to tether grafts with sutures or glue to target sites.

View Article and Find Full Text PDF

Introduction: Diabetic nephropathy (DN) develops in about 40% of patients with type 2 diabetes and remains the leading cause of end-stage renal disease. The mechanisms of DN remain to be elucidated. Oxidative stress is thought to be involved in the development of DN but antioxidant therapy has produced conflicting results.

View Article and Find Full Text PDF

Atherosclerosis represents an ever-present global concern, as it is a leading cause of cardiovascular disease and an immense public welfare issue. Macrophages play a key role in the onset of the disease state and are popular targets in vascular research and therapeutic treatment. Carbon nanodots (CNDs) represent a type of carbon-based nanomaterial and have garnered attention in recent years for potential in biomedical applications.

View Article and Find Full Text PDF

Oxidative stress is proposed to be involved in nonalcoholic fatty liver disease (NAFLD). However, antioxidant therapy results in controversial outcomes. Therefore, we generated a new antioxidant/NAFLD mouse model, LiasHigh/HighLeprdb/db mice, by crossbreeding Leprdb/db mice, an obesity mouse model, with LiasHigh/High mice, generated by overexpression of lipoic acid synthase gene (Lias) and having increased endogenous antioxidant capacity, to investigate whether the new model could block the development of NAFLD.

View Article and Find Full Text PDF

We developed a vaccine formulation containing ApoB derived P210 peptides as autoantigens, retinoic acid (RA) as an immune enhancer, both of which were delivered using PLGA nanoparticles. The formula was used to induce an immune response in 12-week-old male mice with pre-existing atherosclerotic lesions. The nanotechnology platform PRINT was used to fabricate PLGA nanoparticles that encapsulated RA inside and adsorbed the P210 onto the particle surface.

View Article and Find Full Text PDF

Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis.

View Article and Find Full Text PDF

Objective: To study the mechanism of renal injury in mice with the leptin receptor homozygous deficiency.

Methods: Ten male of 28-week-old mice with leptin receptor heterozygous deficiency were selected as control group and ten male mice with leptin receptor homozygous deficiency were used in this study. After fasting for 8 hours, the body mass, fasting blood glucose (FBG) and glycosylated hemoglobulin (HbA1c) of the mice were measured.

View Article and Find Full Text PDF

Air pollution of particulate matter (PM), especially PM, has become a major public health problem in China. Exploration of therapeutic and preventive measures against PM toxicity is of practical significance. The aim of this study was to examine the inhibitory effects of chitosan oligosaccharides (COS) on PM-induced lung inflammation in rats.

View Article and Find Full Text PDF

Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic shock syndrome. Dengue vaccine development is challenging because of the need to induce protection against four antigenically distinct DENV serotypes. Recent studies indicate that tetravalent DENV vaccines must induce balanced, serotype-specific neutralizing antibodies to achieve durable protective immunity against all 4 serotypes.

View Article and Find Full Text PDF

Endogenous formaldehyde is abundantly present in our bodies, at around 100 µM under normal conditions. While such high steady state levels of formaldehyde may be derived by enzymatic reactions including oxidative demethylation/deamination and myeloperoxidation, it is unclear whether endogenous formaldehyde can initiate and/or promote diseases in humans. Here, we show that fluorescent malondialdehyde-formaldehyde (M2FA)-lysine adducts are immunogenic without adjuvants in mice.

View Article and Find Full Text PDF

Atherosclerosis is widely accepted to be a chronic inflammatory disease, and the immunological response to the accumulation of LDL is believed to play a critical role in the development of this disease. 1,4-Dihydropyridine-type MAA-adducted LDL has been implicated in atherosclerosis. Here, we have demonstrated that pure MAA-modified residues can be chemically conjugated to large proteins without by-product contamination.

View Article and Find Full Text PDF

Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus.

View Article and Find Full Text PDF

Oxidative stress is implicated in the pathogenesis of diabetic nephropathy (DN) but outcomes of many clinical trials are controversial. To define the role of antioxidants in kidney protection during the development of diabetic nephropathy, we have generated a novel genetic antioxidant mouse model with over- or under-expression of lipoic acid synthase gene (Lias). These models have been mated with Ins2Akita/+ mice, a type I diabetic mouse model.

View Article and Find Full Text PDF

Background: S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation, which could result in retaining the mitochondrial enzyme activity.

Methods: In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method.

View Article and Find Full Text PDF

Hypothermia is a key symptom of sepsis, but the mechanism(s) leading to hypothermia during sepsis is largely unknown and thus no effective therapy is available for hypothermia. Therefore, it is important to investigate the mechanism and develop effective therapeutic methods. Lipopolysaccharide (LPS)-induced hypothermia accompanied by excess nitric oxide (NO) production leads to a reduction in energy production in wild-type mice.

View Article and Find Full Text PDF

Herein we report the development of a nonviral lipid-complexed PRINT (particle replication in nonwetting templates) protein particle system (LPP particle) for RNA replicon delivery with a view toward RNA replicon-based vaccination. Cylindrical bovine serum albumin (BSA) particles (diameter (d) 1 μm, height (h) 1 μm) loaded with RNA replicon and stabilized with a fully reversible disulfide cross-linker were fabricated using PRINT technology. Highly efficient delivery of the particles to Vero cells was achieved by complexing particles with a mixture of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids.

View Article and Find Full Text PDF

Diabetes is a major risk factor for cardiovascular disease. To examine how diabetes interacts with a mildly compromised lipid metabolism, we introduced the diabetogenic Ins2(C96Y/+) (Akita) mutation into mice expressing human apoE4 (E4) combined with either an overexpressing human LDL receptor gene (hLDLR) or the wild-type mouse gene. The hLDLR allele caused 2-fold reductions in plasma HDL-cholesterol, plasma apoA1, and hepatic triglyceride secretion.

View Article and Find Full Text PDF

Objectives: To study the effects of reduced lipoic acid gene expression on diabetic atherosclerosis in apolipoprotein E null mice (Apoe(-/-)).

Methods And Results: Heterozygous lipoic acid synthase gene knockout mice (Lias(+/-)) crossed with Apoe(-/-) mice were used to evaluate the diabetic effect induced by streptozotocin on atherosclerosis in the aortic sinus of the heart. While diabetes markedly increased atherosclerotic plaque size in Apoe(-/-) mice, a small but significant effect of reduced expression of lipoic acid gene was observed in diabetic Lias(+/-)Apoe(-/-) mice.

View Article and Find Full Text PDF

Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown.

View Article and Find Full Text PDF

Aim: Both hyperglycemia and hyperlipidemia increase oxidative stress and contribute to the development of diabetic nephropathy (DN). We investigated the effects of α-lipoic acid, a natural antioxidant and a cofactor in the multienzyme complexes, on the development of DN in diabetic apolipoprotein E-deficient mice.

Methods: Twelve-week-old male apoE-/- mice on C57BL/6J genetic background were made diabetic with injections of streptozotocin (STZ).

View Article and Find Full Text PDF

Objectives: To evaluate the effects of a genetic reduction of Lias gene expression on atherosclerosis development.

Methods And Results: Heterozygous knockout mice for the lipoid acid synthase gene (Lias(+/-)) were crossed with apolipoprotein E-deficient (ApoE(-/-)) mice, and the plaque size in aortic sinuses of Lias(+/-)ApoE(-/-)mice was evaluated at 6 months of age. Lesions at the aortic sinus in Lias(+/-)ApoE(-/-) males were significantly larger (1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5n57vbvgc178cmhpasi6spnt7hvnv7le): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once