Publications by authors named "Yi Wee Lim"

Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria.

View Article and Find Full Text PDF

A "chemical linearization" approach was applied to synthetic peptide macrocycles to enable their de novo sequencing from mixtures using nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS). This approach─previously applied to individual macrocycles but not to mixtures─involves cleavage of the peptide backbone at a defined position to give a product capable of generating sequence-determining fragment ions. Here, we first established the compatibility of "chemical linearization" by Edman degradation with a prominent macrocycle scaffold based on -Cys peptides cross-linked with the -xylene linker, which are of major significance in therapeutics discovery.

View Article and Find Full Text PDF

Background: Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck.

View Article and Find Full Text PDF

Using an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam.

View Article and Find Full Text PDF

Application of the well-characterized Streptococcus pyogenes CRISPR-Cas9 system in actinomycetes streptomycetes has enabled high-efficiency multiplex genome editing and CRISPRi-mediated transcriptional regulation in these prolific bioactive metabolite producers. Nonetheless, SpCas9 has its limitations and can be ineffective depending on the strains and target sites. Here, we built and tested alternative CRISPR-Cas constructs based on the standalone pCRISPomyces-2 editing plasmid.

View Article and Find Full Text PDF

Silent biosynthetic gene clusters represent a potentially rich source of new bioactive compounds. We report the discovery, characterization, and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus by using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of amino sugars.

View Article and Find Full Text PDF

Opioids in skin function during stress response, regeneration, ageing and, particularly in regulating sensation. In chronic pruritus, topical treatment with Naltrexone changes μ-opioid receptor (μ-OR) localization to relieve itch. The molecular mechanisms behind the effects of Naltrexone on μ-OR function in reduction of itching behavior has not been studied.

View Article and Find Full Text PDF

Background: We previously showed that donation after circulatory death (DCD) canine hearts can be resuscitated if perfused with warm blood. However, clinical application of this technique is complex and difficult. We have developed a simplified system of cold crystalloid perfusion and compared it with standard cold storage for DCD heart preservation.

View Article and Find Full Text PDF