Naunyn Schmiedebergs Arch Pharmacol
September 2024
The treatment of non-small cell lung cancer (NSCLC) is known as a significant level of unmet medical need in spite of the progress in targeted therapy and personalized therapy. Overexpression of the Na/K-ATPase contributes to NSCLC progression, suggesting its potentiality in antineoplastic approaches. Epi-reevesioside F, purified from Reevesia formosana, showed potent anti-NSCLC activity through inhibiting the Na/K-ATPase, leading to internalization of α1- and α3-subunits in Na/K-ATPase and suppression of Akt-independent mTOR-p70S6K-4EBP1 axis.
View Article and Find Full Text PDFChalcones are responsible for biological activity throughout fruits, vegetables, and medicinal plants in preventing and treating a variety of inflammation-related diseases. However, their structure-activity relationship (SAR) in inhibiting inflammasome activation has not been explored. We synthesized numerous chalcones and determined their SAR on lipopolysaccharide (LPS)-primed ATP-induced NLRP3 inflammasome activation.
View Article and Find Full Text PDFThe site-to-site variability in species composition, known as β-diversity, is crucial to understanding spatiotemporal patterns of species diversity and the mechanisms controlling community composition and structure. However, quantifying β-diversity in microbial ecology using sequencing-based technologies is a great challenge because of a high number of sequencing errors, bias, and poor reproducibility and quantification. Herein, based on general sampling theory, a mathematical framework is first developed for simulating the effects of random sampling processes on quantifying β-diversity when the community size is known or unknown.
View Article and Find Full Text PDFABSTRACT The processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions.
View Article and Find Full Text PDFBackground: Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data.
View Article and Find Full Text PDFTo determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control.
View Article and Find Full Text PDFUnderstanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve-fitting analyses, but these methods have not brought us much closer to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity.
View Article and Find Full Text PDFUnderstanding the recovery dynamics of ecosystems presents a major challenge in the human-impacted tropics. We tested whether secondary forests follow equilibrium or non-equilibrium dynamics by evaluating community reassembly over time, across different successional stages, and among multiple life stages. Based on long-term and static data from six 1-ha plots in NE Costa Rica, we show that secondary forests are undergoing reassembly of canopy tree and palm species composition through the successful recruitment of seedlings, saplings, and young trees of mature forest species.
View Article and Find Full Text PDFMultiple linear regression analysis was used to deduce the correlation between the monosaccharide composition ratios of 10 regionally different strains of Lentinula edodes and their in vitro macrophage stimulatory activities. Arabinose, xylose, mannose and galactose were identified as the monosaccharides that could be related to macrophage stimulatory activities. Additional principal component analysis and factor analysis methods were used to treat the same monosaccharide composition ratio data and the compositions of arabinose, xylose, mannose and galactose were found to be important.
View Article and Find Full Text PDF