Conventional photoelectrochemical cells utilize solar energy to drive the chemical conversion of water or CO into useful chemical fuels. Such processes are confronted with general challenges, including the low intrinsic activities and inconvenient storage and transportation of their gaseous products. A photoelectrochemical approach is proposed to drive the reductive production of industrial building-block chemicals and demonstrate that succinic acid and glyoxylic acid can be readily synthesized on Si nanowire array photocathodes free of any cocatalyst and at room temperature.
View Article and Find Full Text PDFThe development of nonprecious metal based electrocatalysts for hydrogen evolution reaction (HER) has received increasing attention over recent years. Previous studies have established MoC as a promising candidate. Nevertheless, its preparation requires high reaction temperature, which more than often causes particle sintering and results in low surface areas.
View Article and Find Full Text PDFIncreasing attention has now been focused on the photoelectrochemical (PEC) hydrogen evolution as a promising route to transforming solar energy into chemical fuels. Silicon is one of the most studied PEC electrode materials, but its performance is still limited by its inherent PEC instability and electrochemical inertness toward water splitting. To achieve significant PEC activities, silicon-based photoelectrodes usually have to be coupled with proper cocatalysts, and thus, the formed semiconductor-cocatalyst interface presents a critical structural parameter in the rational design of efficient PEC devices.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2014
Although great recent efforts have been invested to improve the performance of supercapacitors, these energy storage devices still fall short of meeting our expectations because of their limited working voltage, insufficient cycle life, and high manufacturing cost. Here, we report the facile preparation of cobalt hexacyanoferrate (CoHCFe) nanoparticles, which have an analogous structure to Prussian blue but with many vacant ferricyanide sites. In 0.
View Article and Find Full Text PDF