Publications by authors named "Yeyun Bae"

The development of efficient charge transport layers is crucial for realizing high-performance and stable quantum dot light-emitting diodes (QD-LEDs). The use of a ZnO/ZnMgO bilayer as an electron transporting layer (ETL) has garnered considerable attention. This configuration leverages the high electron mobility of ZnO and the favorable surface state of ZnMgO.

View Article and Find Full Text PDF

Charge imbalance within the emissive layer (EML) has been identified as a major obstacle to achieving high-performance quantum dot light-emitting diodes (QD-LEDs). To address this issue, we propose the use of a compact diamino-based ligand as a universal approach to improve the charge balance within the QD EML. Specifically, we treat QDs symmetrically with 1,4-diaminobutane (DAB) on both the bottom and top sides.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are widely regarded as advanced emissive materials with significant potential for display applications owing to their excellent optical properties such as high color purity, near-unity photoluminescence quantum yield, and size-tunable emission color. Building upon these attractive attributes, QDs have successfully garnered attention in the display market as down-conversion luminophores and now venturing into the realm of self-emissive displays, exemplified by QD light-emitting diodes (QD-LEDs). However, despite these advancements, there remains a relatively limited body of research on QD patterning technologies, which are crucial prerequisites for the successful commercialization of QD-LEDs.

View Article and Find Full Text PDF