Publications by authors named "Yexun Wang"

Background: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S.

View Article and Find Full Text PDF

For specific detection of somatic variants at very low levels, artifacts from the NGS workflow have to be eliminated. Various approaches using unique molecular identifiers (UMI) to analytically remove NGS artifacts have been described. Among them, Duplex-seq was shown to be highly effective, by leveraging the sequence complementarity of two DNA strands.

View Article and Find Full Text PDF

Motivation: Low-frequency DNA mutations are often confounded with technical artifacts from sample preparation and sequencing. With unique molecular identifiers (UMIs), most of the sequencing errors can be corrected. However, errors before UMI tagging, such as DNA polymerase errors during end repair and the first PCR cycle, cannot be corrected with single-strand UMIs and impose fundamental limits to UMI-based variant calling.

View Article and Find Full Text PDF

Background: Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers.

View Article and Find Full Text PDF

Background: PCR amplicon sequencing has been widely used as a targeted approach for both DNA and RNA sequence analysis. High multiplex PCR has further enabled the enrichment of hundreds of amplicons in one simple reaction. At the same time, the performance of PCR amplicon sequencing can be negatively affected by issues such as high duplicate reads, polymerase artifacts and PCR amplification bias.

View Article and Find Full Text PDF

Background: High-throughput sequencing is rapidly becoming common practice in clinical diagnosis and cancer research. Many algorithms have been developed for somatic single nucleotide variant (SNV) detection in matched tumor-normal DNA sequencing. Although numerous studies have compared the performance of various algorithms on exome data, there has not yet been a systematic evaluation using PCR-enriched amplicon data with a range of variant allele fractions.

View Article and Find Full Text PDF

Background: Dysregulated expression of microRNAs (miRNAs) has been previously observed in human cancer tissues and shown promise in defining tumor status. However, there is little information as to if or when expression changes of miRNAs occur in normal tissues after carcinogen exposure.

Results: To explore the possible time-course changes of miRNA expression induced by a carcinogen, we treated mice with one dose of 120 mg/kg N-ethyl-N-nitrosourea (ENU), a model genotoxic carcinogen, and vehicle control.

View Article and Find Full Text PDF