Publications by authors named "Yexing Jing"

Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway.

View Article and Find Full Text PDF

Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are vital plant steroid hormones involved in numerous aspects of plant life including growth, development, and responses to various stresses. However, the underlying mechanisms of how BR regulates abiotic stress responses in wheat (Triticum aestivum L.) remain to be elucidated.

View Article and Find Full Text PDF

Brassinosteroids play an essential role in promoting skotomorphogenesis, yet the underlying mechanisms remain unknown. Here we report that a plant-specific BLISTER (BLI) protein functions as a positive regulator of both BR signaling and skotomorphogenesis in Arabidopsis (Arabidopsis thaliana). We found that the glycogen synthase kinase 3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE2 interacts with and phosphorylates BLI at 4 phosphorylation sites (Ser70, Ser146, Thr256, and Ser267) for degradation; in turn, BR inhibits degradation of BLI.

View Article and Find Full Text PDF

Drought stress causes substantial losses in crop production per year worldwide, threatening global food security. Identification of the genetic components underlying drought tolerance in plants is of great importance. In this study, we report that loss-of-function of the chromatin-remodeling factor PICKLE (PKL), which is involved in repression of transcription, enhances drought tolerance of Arabidopsis.

View Article and Find Full Text PDF

CONSTANS (CO) is a central regulator of floral initiation in response to photoperiod. In this study, we show that the GSK3 kinase BIN2 physically interacts with CO and the gain-of-function mutant displays late flowering phenotype through down-regulation of transcription. Genetic analyses show that BIN2 genetically acts upstream of CO in regulating flowering time.

View Article and Find Full Text PDF

Improvements in plant architecture, such as reduced plant height under high-density planting, are important for agricultural production. Light and gibberellin (GA) are essential external and internal cues that affect plant architecture. In this study, we characterize the direct interaction of distinct receptors that link light and GA signaling in () and wheat ( L.

View Article and Find Full Text PDF

The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play key roles in regulating plant development, but little is known about their function in abscisic acid (ABA) signaling. Here, we report that the miR156-targeted SPLs enhance ABA responses and contribute to the inhibition of pre-harvest sprouting. We find that SPL9 directly activates the expression of ABA responsive genes through binding to their promoters.

View Article and Find Full Text PDF

The domestication gene Q is largely responsible for the widespread cultivation of wheat because it confers multiple domestication traits. However, the underlying molecular mechanisms of how Q regulates these domestication traits remain unclear. In this study, we identify a Q-interacting protein TaLAX1, a basic helix-loop-helix transcription factor, through yeast two-hybrid assays.

View Article and Find Full Text PDF

Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for wheat yield.

View Article and Find Full Text PDF

Appropriate regulation of crop seed germination is of significance for agriculture production. In this study, we show that TaJAZ1, most closely related to Arabidopsis JAZ3, negatively modulates abscisic acid (ABA)-inhibited seed germination and ABA-responsive gene expression in bread wheat. Biochemical interaction assays demonstrate that the C-terminal part containing the Jas domain of TaJAZ1 physically interacts with TaABI5.

View Article and Find Full Text PDF