Publications by authors named "Yewon Cheon"

Linoleic acid (LA, 18:2n-6) is a precursor to arachidonic acid (AA, 20:4n-6), which can be converted by brain lipoxygenase and cyclooxygenase (COX) enzymes into various lipid mediators involved in the regulation of brain immunity. Brain AA metabolism is activated in rodents by the bacterial endotoxin, lipopolysaccharide (LPS). This study tested the hypothesis that dietary LA lowering, which limits plasma supply of AA to the brain, reduces LPS-induced upregulation in brain AA metabolism.

View Article and Find Full Text PDF

Calcium-independent phospholipase A2 group VIa (iPLA2β) preferentially releases docosahexaenoic acid (DHA) from the sn-2 position of phospholipids. Mutations of its gene, PLA2G6, are found in patients with several progressive motor disorders, including Parkinson disease. At 4 months, PLA2G6 knockout mice (iPLA2β(-/-)) show minimal neuropathology but altered brain DHA metabolism.

View Article and Find Full Text PDF

Background: Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline.

Methods: Male rats after weaning were maintained on one of three diets for 15 weeks.

View Article and Find Full Text PDF

Background: Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.

Objective: To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.

Design: Secondary analysis of a randomized trial.

View Article and Find Full Text PDF

Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.

View Article and Find Full Text PDF

Background: Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition--in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs)-has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence might be the critical age range for the negative impact of diet as an environmental insult.

View Article and Find Full Text PDF

Background: Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in patients with schizophrenia (SCZ), often as an incomplete lipid profile or a percent of total lipid concentration. In this study, we quantified absolute concentrations (nmol/g wet weight) and fractional concentrations (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic administration of mood stabilizers and atypical antipsychotics like clozapine (CLZ) and olanzapine (OLZ) reduces the brain's arachidonic acid (AA) cascade, which may help treat bipolar disorder (BD) characterized by elevated AA markers.
  • In studies with rats, OLZ lowered brain cyclooxygenase activity and prostaglandin E(2) levels, while CLZ showed similar effects, particularly in altering the incorporation of plasma unesterified AA into brain phospholipids.
  • The therapeutic effects appear to stem from decreasing the availability of unesterified AA in the plasma, suggesting both types of medications could effectively target the brain's elevated AA cascade associated with
View Article and Find Full Text PDF

Background: In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2) enzymes that regulate arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-6) acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks.

View Article and Find Full Text PDF

Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in human diets, a major component of human tissues, and the direct precursor to the bioactive oxidized LA metabolites (OXLAMs), 9- and 13 hydroxy-octadecadienoic acid (9- and 13-HODE) and 9- and 13-oxo-octadecadienoic acid (9- and 13-oxoODE). These four OXLAMs have been mechanistically linked to pathological conditions ranging from cardiovascular disease to chronic pain. Plasma OXLAMs, which are elevated in Alzheimer's dementia and non-alcoholic steatohepatitis, have been proposed as biomarkers useful for indicating the presence and severity of both conditions.

View Article and Find Full Text PDF

Disturbed lipid metabolism has been reported in antiretroviral-naive HIV-1-infected patients suggesting a direct effect of the virus on lipid metabolism. To test that the HIV-1 virus alone could alter lipid concentrations, we measured these concentrations in an HIV-1 transgenic (Tg) rat model of human HIV-1 infection, which demonstrates peripheral and central pathology by 7-9 months of age. Concentrations were measured in high-energy microwaved heart, brain and liver from 7-9 month-old HIV-1 Tg and wildtype rats, and in plasma from non-microwaved rats.

View Article and Find Full Text PDF

Unlabelled: Arachidonic acid (AA) is found in high concentrations in brain phospholipids and is released as a second messenger during neurotransmission and much more so during neuroinflammation and excitotoxicity. Upregulated brain AA metabolism associated with neuroinflammation has been imaged in rodents using [1-(14)C]AA and with PET in Alzheimer disease patients using [1-(11)C]AA. Radiotracer brain AA uptake is independent of cerebral blood flow, making it an ideal tracer despite altered brain functional activity.

View Article and Find Full Text PDF

In rats, FDA-approved mood stabilizers used for treating bipolar disorder (BD) selectively downregulate brain markers of the arachidonic acid (AA) cascade, which are upregulated in postmortem BD brain. Phase III clinical trials show that the anticonvulsant gabapentin (GBP) is ineffective in treating BD. We hypothesized that GBP would not alter the rat brain AA cascade.

View Article and Find Full Text PDF

Background: The mode of action of clozapine, an atypical antipsychotic approved for treating schizophrenia (SZ) and used for bipolar disorder (BD) mania, remains unclear. We tested for overlap with the actions of the mood stabilizers, lithium, carbamazepine and valproate, which downregulate arachidonic acid (AA) cascade markers in rat brain and upregulate BDNF. AA cascade markers are upregulated in BD and SZ postmortem BD brain in association with neuroinflammation and synaptic loss, while BDNF is decreased.

View Article and Find Full Text PDF

Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes.

View Article and Find Full Text PDF

Background And Objective: Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D(2)-like (D(2), D(3), and D(4)) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce D(2)-like-mediated signaling via AA.

View Article and Find Full Text PDF
Article Synopsis
  • Olanzapine (OLZ) is an atypical antipsychotic used to treat bipolar disorder, but its exact way of working isn't fully understood.
  • This study investigated whether chronic OLZ treatment could lower arachidonic acid (AA) turnover in rat brains, similar to other mood stabilizers like lithium and valproate.
  • Results showed that chronic OLZ decreased levels of unesterified AA and its turnover in brain cells, and reduced the activity of cyclooxygenase and levels of the proinflammatory compound prostaglandin E₂, potentially linking these effects to its effectiveness in managing bipolar disorder.
View Article and Find Full Text PDF
Article Synopsis
  • The Ca(2+)-independent phospholipase A(2)β (iPLA(2)β) enzyme is crucial for hydrolyzing docosahexaenoic acid (DHA) from phospholipids, and its deficiency is linked to neurodegenerative conditions and neurological dysfunction in both humans and mice.
  • In a study on mice, those lacking iPLA(2)β showed significant reductions in DHA metabolism and incorporation in the brain compared to normal mice, indicating impaired brain DHA signaling.
  • Treatment with the muscarinic receptor agonist arecoline enhanced DHA metabolism in normal mice but had a diminished effect in iPLA(2)β-deficient mice, suggesting the
View Article and Find Full Text PDF

Fatty acids (FA) regulate the expression of genes involved in lipid and energy metabolism. In particular, two transcription factors, sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator activated receptor alpha (PPARalpha), have emerged as key mediators of gene regulation by FA. SREBP-1c induces a set of lipogenic enzymes in liver.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor alpha (PPARalpha), a key regulator of fatty acid oxidation, is essential for adaptation to fasting in rats and mice. However, physiological functions of PPARalpha in other species, including humans, are controversial. A group of PPARalpha ligands called peroxisome proliferators (PPs) causes peroxisome proliferation and hepatocarcinogenesis only in rats and mice.

View Article and Find Full Text PDF