Publications by authors named "Yewdell J"

Inflammatory cytokines are pivotal to immune responses. Upon cytokine exposure, cells enter an "alert state" that enhances their visibility to the immune system. Here, we identified an alert-state subpopulation of ribosomes defined by the presence of the P-stalk.

View Article and Find Full Text PDF
Article Synopsis
  • The yellow fever virus 17D (YFV-17D) vaccine is highly effective at generating antiviral immunity, but the mechanisms behind its immune response remain unclear.
  • Researchers discovered that YFV-17D infection triggers mitochondrial activity and metabolic changes that enhance the production of type I interferon (IFN), a key part of the immune response.
  • The study found that reactive oxygen species (mROS) and peroxynitrite produced by mitochondrial hyperactivity play a crucial role in activating innate immunity, making the vaccine more effective against infection.
View Article and Find Full Text PDF

Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited.

View Article and Find Full Text PDF

Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested.

View Article and Find Full Text PDF

We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S.

View Article and Find Full Text PDF

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection.

View Article and Find Full Text PDF

Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of responses to novel epitopes. To examine the contribution of circulating antibody to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited.

View Article and Find Full Text PDF

Antigenic drift, the gradual accumulation of amino acid substitutions in the influenza virus hemagglutinin (HA) receptor protein, enables viral immune evasion. Antibodies (Abs) specific for the drift-resistant HA stem region are a promising universal influenza vaccine target. Although anti-stem Abs are not believed to block viral attachment, here we show that complement component 1q (C1q), a 460-kilodalton protein with six Ab Fc-binding domains, confers attachment inhibition to anti-stem Abs and enhances their fusion and neuraminidase inhibition.

View Article and Find Full Text PDF

Rapid lymphocyte cell division places enormous demands on the protein synthesis machinery. Flow cytometric measurement of puromycylated ribosome-associated nascent chains after treating cells or mice with translation initiation inhibitors reveals that ribosomes in resting lymphocytes in vitro and in vivo elongate at typical rates for mammalian cells. Intriguingly, elongation rates can be increased up to 30% by activation in vivo or fever temperature in vitro.

View Article and Find Full Text PDF

Background: Facilitated by the inability to vaccinate, and an immature immune system, COVID-19 remains a leading cause of death among children. Vaccinated lactating mothers produce specific SARS-CoV-2 antibodies in their milk, capable of neutralizing the virus . Our objective for this study is to assess the effect of COVID-19 booster dose on SARS-CoV-2 antibody concentration and viral neutralization in milk, plasma, and infant stool.

View Article and Find Full Text PDF

Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, we show that mutations unique to Omicron Spike enable enhanced entry into nasal tissue.

View Article and Find Full Text PDF

Influenza A virus (IAV) infection causes acute and often lethal inflammation in the lung. The role of macrophages in this adverse inflammation is partially understood. The surfactant protein A receptor 210 (SP-R210) consists of two isoforms, a long (L) SP-R210 and a short (S) SP-R210 isoform encoded by alternative splicing of the myosin 18A gene.

View Article and Find Full Text PDF

Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, enhanced infectivity maps to the step of cellular entry and evolved recently through mutations unique to Omicron Spike.

View Article and Find Full Text PDF

Tissue-resident memory (T) CD8 T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of T differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8 T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote T differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues.

View Article and Find Full Text PDF

We recently reported that SARS-CoV-2 nucleocapsid (N) protein is abundantly expressed on the surface of both infected and neighboring uninfected cells, where it enables activation of Fc receptor-bearing immune cells with anti-N antibodies (Abs) and inhibits leukocyte chemotaxis by binding chemokines (CHKs). Here, we extend these findings to N from the common cold human coronavirus (HCoV)-OC43, which is also robustly expressed on the surface of infected and noninfected cells by binding heparan sulfate/heparin (HS/H). HCoV-OC43 N binds with high affinity to the same set of 11 human CHKs as SARS-CoV-2 N, but also to a nonoverlapping set of six cytokines.

View Article and Find Full Text PDF

Peptide ligands presented by cell-surface MHC class-I molecules enable T cells to eradicate intracellular pathogens and cancers. The presented peptide repertoire, the class-I immunopeptidome, is generated from each cell's translatome in a highly biased manner to avoid overrepresenting highly abundant translation products. The immunopeptidome can only be defined by mass spectrometry (MS).

View Article and Find Full Text PDF

We recently reported that SARS-CoV-2 Nucleocapsid (N) protein is abundantly expressed on the surface of both infected and neighboring uninfected cells, where it enables activation of Fc receptor-bearing immune cells with anti-N antibodies (Abs) and inhibits leukocyte chemotaxis by binding chemokines (CHKs). Here, we extend these findings to N from the seasonal human coronavirus (HCoV)-OC43, which is also robustly expressed on the surface of infected and non-infected cells by binding heparan-sulfate/heparin (HS/H). HCoV-OC43 N binds with high affinity to the same set of 11 human CHKs as SARS-CoV-2 N, but also to a non-overlapping set of 6 cytokines (CKs).

View Article and Find Full Text PDF

Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection.

View Article and Find Full Text PDF

Objective: Assess presence, durability, and neutralization capacity of SARS-CoV-2-specific antibodies in breastfeeding infants' stool, mother's plasma and milk following maternal vaccination.

Design: Thirty-seven mothers and 25 infants were enrolled between December 2020 and November 2021 for this prospective observational study. All mothers were vaccinated during lactation except three, which were vaccinated during pregnancy.

View Article and Find Full Text PDF