Publications by authors named "Yew-Mun Lee"

More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs) are being researched as a therapeutic option for healing injured tissues, with a focus on enhancing their healing abilities.
  • The study highlights the importance of neuronal protein 3.1 (P311) in improving MSCs' function, showing that its increased expression boosts healing by reducing inflammation, raising IL10 levels, and promoting significant healing factors like collagen and blood vessel formation.
  • The research identifies the mTOR signaling pathway as a key mechanism through which P311 enhances vascular endothelial growth factor (VEGF) production in MSCs, supporting the potential for P311-modified MSCs in more effective skin wound healing treatments.
View Article and Find Full Text PDF

Accurate segregation of chromosomes during anaphase relies on the central spindle and its regulators. A newly raised concept of the central spindle, the bridging fiber, shows that sliding of antiparallel microtubules (MTs) within the bridging fiber promotes chromosome segregation. However, the regulators of the bridging fiber and its regulatory mechanism on MTs sliding remain largely unknown.

View Article and Find Full Text PDF

Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Nasal polyps are a significantly associated pathology of chronic rhinosinusitis (CRS) whose mechanisms of pathogenesis are not fully elucidated, especially the interaction of the polyp with its environment that allows its growth on the nasal epithelial lining. Exosomes are nanovesicles that serve important biological functions, including cell-to-cell signaling and communication.

Objective: Hence, we sought to explore the roles of the epithelial-derived exosomal proteome obtained from the human nasal epithelium in the modulation of CRS with nasal polyp (CRSwNP) pathogenesis.

View Article and Find Full Text PDF

Candida albicans is a major fungal pathogen, accounting for approximately 15% of healthcare infections with associated mortality as high as 40% in the case of systemic candidiasis. Antifungal agents for C. albicans infections are limited, and rising resistance is an inevitable problem.

View Article and Find Full Text PDF

A substantial challenge worldwide is emergent drug resistance in malaria parasites against approved drugs, such as chloroquine (CQ). To address these unsolved CQ resistance issues, only rare examples of artemisinin (ART)-based hybrids have been reported. Moreover, protein targets of such hybrids have not been identified yet, and the reason for the superior efficacy of these hybrids is still not known.

View Article and Find Full Text PDF

Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation.

View Article and Find Full Text PDF

Pin1 belongs to the family of the peptidyl-prolyl - isomerase (PPIase), which is a class of enzymes that catalyze the / isomerization of the Proline residue. Pin1 is unique and only catalyzes the phosphorylated Serine/Threonine-Proline (S/T-P) motifs of a subset of proteins. Since the discovery of Pin1 as a key protein in cell cycle regulation, it has been implicated in numerous diseases, ranging from cancer to neurodegenerative diseases.

View Article and Find Full Text PDF

Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of ART on mitophagy, an important cellular pathway that facilitates the removal of damaged mitochondria, remains unknown.

View Article and Find Full Text PDF

Many plant-specialized metabolites have remedial properties and provide an endless chemical resource for drug discovery. However, most of these metabolites have promiscuous binding targets in mammalian cells and elicit a series of responses that collectively change the physiology of the cells. To explore the potential of these multi-functional and multi-targeted drugs, it is critical to understand the direct relationships between their key chemical features, the corresponding binding targets and the relevant biological effects, which is a prerequisite for future drug modification and optimization.

View Article and Find Full Text PDF

Traditional toxicological screens based on the zebrafish model use observable phenotypic endpoints during their development to determine the toxicity of teratogens. Yet toxicity does not always translate to obvious phenotypic changes and the criteria used to score the toxicity of a teratogen are frequently subjected to human perception. The advancement in omics-based technologies has allowed us to quantitatively and objectively determine the toxicity of a teratogen based on biomolecular changes.

View Article and Find Full Text PDF

The increasing number of nanoparticles (NPs) being used in various industries has led to growing concerns of potential hazards that NP exposure can incur on human health. However, its global effects on humans and the underlying mechanisms are not systemically studied. Human embryonic stem cells (hESCs), with the ability to differentiate to any cell types, provide a unique system to assess cellular, developmental, and functional toxicity in vitro within a single system highly relevant to human physiology.

View Article and Find Full Text PDF

The antimalarial artemisinin (ART) possesses anticancer activity, but its underlying mechanism remains largely unclear. Using a chemical proteomics approach with artemisinin-based activity probes, we identified over 300 specific ART targets. This reveals an anticancer mechanism whereby ART promiscuously targets multiple critical biological pathways and leads to cancer cell death.

View Article and Find Full Text PDF

RNA-binding protein Rbm24 is a key regulator of heart development and required for sarcomere assembly and heart contractility. Yet, its underlying mechanism remains unclear. Here, we link serine/threonine kinase 38 (Stk38) signaling to the regulation of Rbm24 by showing that Rbm24 phosphorylation and its function could be modulated by Stk38.

View Article and Find Full Text PDF

At present, several assays that use radioisotope labeling to quantify the degradation of long-lived proteins have been developed to measure autophagic flux. Here, we describe a nonradioactive pulse-chase protocol using L-azidohomoalanine (AHA) labeling to quantify long-lived protein degradation during autophagy. AHA is used as a surrogate for L-methionine, and, when added to cultured cells grown in methionine-free medium, AHA is incorporated into proteins during de novo protein synthesis.

View Article and Find Full Text PDF

Understanding the mechanism of action (MOA) of bioactive natural products will guide endeavor to improve their cellular activities. Artemisinin and its derivatives inhibit cancer cell proliferation, yet with much lower efficiencies than their roles in killing malaria parasites. To improve their efficacies on cancer cells, we studied the MOA of artemisinin using chemical proteomics and found that free heme could directly activate artemisinin.

View Article and Find Full Text PDF

As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible.

View Article and Find Full Text PDF

Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process.

View Article and Find Full Text PDF

Natural and traditional medicines, being a great source of drugs and drug leads, have regained wide interests due to the limited success of high-throughput screening of compound libraries in the past few decades and the recent technology advancement. Many drugs/bioactive compounds exert their functions through interaction with their protein targets, with more and more drugs showing their ability to target multiple proteins, thus target identification has an important role in drug discovery and biomedical research fields. Identifying drug targets not only furthers the understanding of the mechanism of action (MOA) of a drug but also reveals its potential therapeutic applications and adverse side effects.

View Article and Find Full Text PDF

The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite.

View Article and Find Full Text PDF

Majority of the proteomic studies on tissue samples involve the use of gel-based approach for profiling and digestion. The laborious gel-based approach is slowly being replaced by the advancing in-solution digestion approach. However, there are still several difficulties such as difficult-to-solubilize proteins, poor proteomic analysis in complex tissue samples, and the presence of sample impurities.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a form of cancer that affects the hematopoietic precursor cells with lethal effects. We investigated the prospect of using genistein as an effective alternate therapy for AML. A two-cell line model, one possessing the FLT3 gene with the ITD mutation (MV4-11) and the other with the wildtype FLT3 gene (HL-60) has been employed.

View Article and Find Full Text PDF

Target-identification and understanding of mechanism-of-action (MOA) are challenging for development of small-molecule probes and their application in biology and drug discovery. For example, although aspirin has been widely used for more than 100 years, its molecular targets have not been fully characterized. To cope with this challenge, we developed a novel technique called quantitative acid-cleavable activity-based protein profiling (QA-ABPP) with combination of the following two parts: (i) activity-based protein profiling (ABPP) and iTRAQ™ quantitative proteomics for identification of target proteins and (ii) acid-cleavable linker-based ABPP for identification of peptides with specific binding sites.

View Article and Find Full Text PDF