Publications by authors named "Yew Chung Tang"

Noncoding RNAs (ncRNAs), in the form of structural, catalytic or regulatory RNAs, have emerged to be critical effectors of many biological processes. With the advent of new technologies, we have begun to appreciate how intracellular and circulatory ncRNAs elegantly choreograph the regulation of gene expression and protein function(s) in the cell. Armed with this knowledge, the clinical utility of ncRNAs as biomarkers has been recently tested in a wide range of human diseases.

View Article and Find Full Text PDF

Adipocytic tumors are the most common subtype of soft tissue tumors. In current clinical practice, distinguishing benign lipomas from well-differentiated liposarcomas (WDLPS), as well as dedifferentiated liposarcomas (DDLPS) from their morphologic mimics, remains a significant diagnostic challenge. This is especially so when examining small biopsy samples and without the aid of additional ancillary tests.

View Article and Find Full Text PDF

Background: Mammography is widely used for breast cancer screening but suffers from a high false-positive rate. Here, we perform the largest comprehensive, multi-center study to date involving diverse ethnic groups, for the identification of circulating miRNAs for breast cancer screening.

Methods: This study had a discovery phase (n = 289) and two validation phases (n = 374 and n = 379).

View Article and Find Full Text PDF

Precision preventive healthcare aims to improve patient health by integrating preventive measures with early disease detection for timely intervention with precision medicine. Key to the delivery of preventive healthcare is the clinical adoption of novel assays that enable early disease detection. Such assays, typically based on biomarkers such as microRNAs (miRNAs) from liquid biopsy or excreta, are entering clinical practice after years of clinical development and validation.

View Article and Find Full Text PDF

Mammography is extensively used for breast cancer screening but has high false-positive rates. Here, prospectively collected blood samples were used to identify circulating microRNA (miRNA) biomarkers to discriminate between malignant and benign breast lesions among women with abnormal mammograms. The Discovery cohort comprised 72 patients with breast cancer and 197 patients with benign breast lesions, while the Validation cohort had 73 and 196 cancer and benign cases, respectively.

View Article and Find Full Text PDF

Objective: An unmet need exists for a non-invasive biomarker assay to aid gastric cancer diagnosis. We aimed to develop a serum microRNA (miRNA) panel for identifying patients with all stages of gastric cancer from a high-risk population.

Design: We conducted a three-phase, multicentre study comprising 5248 subjects from Singapore and Korea.

View Article and Find Full Text PDF

Background: Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers.

View Article and Find Full Text PDF

Background: While there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene that encodes the PI3K regulatory subunit p55γ, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians.

View Article and Find Full Text PDF

Microarray technology has made it possible to simultaneously study the abundance, interactions, and functions of potentially tens of thousands of biological molecules. From its earliest use in DNA microarrays, where only nucleic acids were captured and detected on the arrays, applications of microarrays now extend to those involving biomolecules such as antibodies, proteins, peptides, and carbohydrates. In contrast to the relative robustness of DNA microarrays, the use of such chemically diverse biomolecules on microarray formats presents many challenges in their fabrication as well as application.

View Article and Find Full Text PDF

Protein microarray offers a means for high-throughput profiling of cellular proteins to provide insights into the mechanisms of biological processes. This study describes the design and fabrication of a robust platform, spatially addressable protein array (SAPA), by exploring the specificity of ssDNA hybridization for self-assembly of semi-synthetic ssDNA-antibody conjugates which capture antigens from complex biological samples. This approach does not involve the direct immobilization of antibodies nor antigen, but instead captures the target antigens in the solution phase followed by self-directed assembly of the complex onto the surface.

View Article and Find Full Text PDF

Protein microarrays are promising tools that can potentially enable high throughput proteomic screening in areas such as disease diagnosis and drug discovery. A critical aspect in the development of protein microarrays is the optimization of the array's surface chemistry to achieve the high sensitivity required for detection of proteins in cell lysate and other complex biological mixtures. In the present study, a high-density antibody array with minimal nonspecific cellular protein adsorption was prepared using a glass surface coated with a poly(propyleneimine) dendrimer terminated with carboxyl group (PAMAM-COOH).

View Article and Find Full Text PDF