Publications by authors named "Yew Ai Tan"

Oil palm fruit is widely used for edible oils, but the health benefits of other components are relatively unknown. We examined if consuming a polyphenol-rich extract of the fruit, from a vegetation by-product of oil processing, which also contains fibre, has gastro-intestinal benefits in rats on a Western-type diet (WD). The oil palm preparation (OPP) was added to food (OPP-F) or drinking water (OPP-D) to provide 50 mg of gallic acid equivalents (GAE)/d and compared to effects of high amylose maize starch (HAMS; 30%) in the diet or green tea extract (GT; 50 mg GAE/d) in drinking water over 4 wk.

View Article and Find Full Text PDF

Plant phenolics are being increasingly consumed globally with limited scientific and clinical evidence pertaining to safety and efficacy. The oil palm fruit contains a cocktail of phenolics, and palm oil production results in high volumes of aqueous by-products enriched in phenolics and bioactives. Several lines of evidence from in vitro and in vivo animal studies confirmed that the aqueous extract enriched in phenolics and other bioactives collectively known as oil palm phenolics (OPP) is safe and has potent bioactivity.

View Article and Find Full Text PDF

Alzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid- peptide (A) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of A42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that A42 aggregation is inhibited by oil palm phenolics (OPP), an aqueous extract from the oil palm tree .

View Article and Find Full Text PDF

Objectives: Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.

View Article and Find Full Text PDF

Background: Water-soluble phenolics from the oil palm possess significant biological properties.

Purpose: In this study, we aimed to discover the role of oil palm phenolics (OPP) in influencing the gene expression changes caused by an atherogenic diet in mice.

Methods: We fed mice with either a low-fat normal diet (14.

View Article and Find Full Text PDF

Background: Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models.

View Article and Find Full Text PDF

Waste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products annually. This aqueous stream is rich in phenolic antioxidants, which were investigated for their composition and potential in vitro biological activity.

View Article and Find Full Text PDF

It is well established that plant phenolics elicit various biological activities, with positive effects on health. Palm oil production results in large volumes of aqueous by-products containing phenolics. In the present study, we describe the effects of oil palm phenolics (OPP) on several degenerative conditions using various animal models.

View Article and Find Full Text PDF

The palm fruit (Elaies guineensis) yields palm oil, a palmitic-oleic rich semi solid fat and the fat-soluble minor components, vitamin E (tocopherols, tocotrienols), carotenoids and phytosterols. A recent innovation has led to the recovery and concentration of water-soluble antioxidants from palm oil milling waste, characterized by its high content of phenolic acids and flavonoids. These natural ingredients pose both challenges and opportunities for the food and nutraceutical industries.

View Article and Find Full Text PDF