Publications by authors named "Yevhen Zelinskyi"

In this work, we introduce a framework for efficient and accurate Monte Carlo (MC) simulations of spatially resolved reflectance (SRR) acquired by optical fiber probes that account for all the details of the probe tip including reflectivity of the stainless steel and the properties of the epoxy fill and optical fibers. While using full details of the probe tip is essential for accurate MC simulations of SRR, the break-down of the radial symmetry in the detection scheme leads to about two orders of magnitude longer simulation times. The introduced framework mitigates this performance degradation, by an efficient reflectance regression model that maps SRR obtained by fast MC simulations based on a simplified probe tip model to SRR simulated using the full details of the probe tip.

View Article and Find Full Text PDF

In this work, we revise the preparation procedure and conduct an in depth characterization of optical properties for the recently proposed silicone-based tissue-mimicking optical phantoms in the spectral range from 475 to 925 nm. The optical properties are characterized in terms of refractive index and its temperature dependence, absorption and reduced scattering coefficients and scattering phase function related quantifiers. The scattering phase function and related quantifiers of the optical phantoms are first assessed within the framework of the Mie theory by using the measured refractive index of SiliGlass and size distribution of the hollow silica spherical particles that serve as scatterers.

View Article and Find Full Text PDF

Monodisperse polystyrene microspheres are often utilized in optical phantoms since optical properties such as the scattering coefficient and the scattering phase function can be calculated using the Mie theory. However, the calculated values depend on the inherent physical parameters of the microspheres which include the size, refractive index, and solid content. These parameters are often provided only approximately or can be affected by long shelf times.

View Article and Find Full Text PDF