PLoS Comput Biol
March 2021
During development, neurons arrive at local brain areas in an extended period of time, but how they form local neural circuits is unknown. Here we computationally model the emergence of a network for precise timing in the premotor nucleus HVC in songbird. We show that new projection neurons, added to HVC post hatch at early stages of song development, are recruited to the end of a growing feedforward network.
View Article and Find Full Text PDFSequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models.
View Article and Find Full Text PDFThe E=0 octet of bilayer graphene in the filling factor range of -4<ν<4 is a fertile playground for many-body phenomena, yet a Landau level diagram is missing due to strong interactions and competing quantum degrees of freedom. We combine measurements and modeling to construct an empirical and quantitative spectrum. The single-particlelike diagram incorporates interaction effects effectively and provides a unified framework to understand the occupation sequence, gap energies, and phase transitions observed in the octet.
View Article and Find Full Text PDF