Publications by authors named "Yevgenya Grinblat"

Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth.

View Article and Find Full Text PDF

Background: The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering.

Methods: To identify genes critical for plasticity, a forward genetic screen for zebrafish genes that mediate habituation learning was performed, which identified a mutant allele, doryp177, that caused reduced habituation of the acoustic startle response.

View Article and Find Full Text PDF

The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia).

View Article and Find Full Text PDF

A pedigree of subjects presented with frontonasal dysplasia (FND). Genome sequencing and analysis identified a p.L165F missense variant in the homeodomain of the transcription factor ALX1 which was imputed to be pathogenic.

View Article and Find Full Text PDF

Evolutionary conservation and experimental tractability have made animal model systems invaluable tools in our quest to understand human embryogenesis, both normal and abnormal. Standard genetic approaches, particularly useful in understanding monogenic diseases, are no longer sufficient as research attention shifts toward multifactorial outcomes. Here, we examine this progression through the lens of holoprosencephaly (HPE), a common human malformation involving incomplete forebrain division, and a classic example of an etiologically complex outcome.

View Article and Find Full Text PDF

Background: Rfx winged-helix transcription factors, best known as key regulators of core ciliogenesis, also play ciliogenesis-independent roles during neural development. Mammalian Rfx4 controls neural tube morphogenesis via both mechanisms.

Results: We set out to identify conserved aspects of rfx4 gene function during vertebrate development and to establish a new genetic model in which to analyze these mechanisms further.

View Article and Find Full Text PDF

The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly.

View Article and Find Full Text PDF

Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear.

View Article and Find Full Text PDF

Alternative cleavage and polyadenylation generates multiple transcript variants producing mRNA isoforms with different length 3'-UTRs. Alternative cleavage and polyadenylation enables differential post-transcriptional regulation via the availability of different cis-acting elements in 3'-UTRs. Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and melanogenesis.

View Article and Find Full Text PDF

Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain.

View Article and Find Full Text PDF

Alternative cleavage and polyadenylation generate multiple transcript variants of mRNA isoforms with different length of 3'-untranslated region (UTR). Alternative cleavage and polyadenylation enable differential post-transcriptional regulation of transcripts via the availability of different cis-acting elements in 3'-UTRs. Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and melanogenesis.

View Article and Find Full Text PDF

Wnt and Hedgehog signaling pathways play central roles in embryogenesis, stem cell maintenance, and tumorigenesis. However, the mechanisms by which these two pathways interact are not well understood. Here, we identified a novel mechanism by which Wnt signaling pathway stimulates the transcriptional output of Hedgehog signaling.

View Article and Find Full Text PDF

Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2.

View Article and Find Full Text PDF

During neurulation, vertebrate embryos form a neural tube (NT), the rudiment of the central nervous system. In mammals and birds, a key step in cranial NT morphogenesis is dorsolateral hinge-point (DLHP) bending, which requires an apical actomyosin network. The mechanism of DLHP formation is poorly understood, although several essential genes have been identified, among them Zic2, which encodes a zinc-finger transcription factor.

View Article and Find Full Text PDF

Factor for adipocyte differentiation 24 (fad24) is a novel gene that has been implicated in adipocyte differentiation and DNA replication. In a screen for zebrafish mutants that have an abnormal tissue distribution of neutrophils, we identified an insertional allele of fad24, fad24hi1019. Homozygous fad24hi1019 larvae exhibit muscle degeneration accompanied by leukocyte infiltration.

View Article and Find Full Text PDF

Patterns of transcription factor expression establish a blueprint for the vertebrate forebrain early in embryogenesis. In the future diencephalon, several genes with patterned expression have been identified, yet their specific functions and interactions between them are not well understood. We have uncovered a crucial role for one such gene, zic2a, during formation of the anterior diencephalon in zebrafish.

View Article and Find Full Text PDF

During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle.

View Article and Find Full Text PDF

Wnt growth factors acting through the canonical intracellular signaling cascade play fundamental roles during vertebrate brain development. In particular, canonical Wnt signaling is crucial for normal development of the dorsal midbrain, the future optic tectum. Wnts act both as patterning signals and as regulators of cell growth.

View Article and Find Full Text PDF

To identify genes required for development of the brain and somites, we performed a pilot screen of gynogenetic haploid zebrafish embryos produced from mothers mutagenized by viral insertion. We describe an efficient method to identify new mutations and the affected gene. In addition, we report the results of a small-scale screen that identified five genes required for brain development, including novel alleles of nagie oko, pou5f1, ribosomal protein L36, and n-cadherin, as well as a novel allele of the laminin g1 gene that is required for normal skeletal muscle fiber organization and somite patterning.

View Article and Find Full Text PDF

Members of the Wnt family of extracellular proteins play essential roles during many phases of vertebrate embryonic development. The molecular mechanism of their action involves a complex cascade of intracellular signaling events, which remains to be understood completely. Recently, two novel cytoplasmic modulators of Wnt signaling, Frodo and Dapper, were identified in Xenopus.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp618mrkkfd1qanjelcalf902d0hh3raa): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once