Publications by authors named "Yevgeny Moskovitz"

Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout the simulation under standard conditions. This allowed for the accurate modeling of the effects of hydrostatic pressure at an ambient pressure of 25 bar.

View Article and Find Full Text PDF

Thermally induced shape memory poly(ε-caprolactone) (PCL)-based polymers are one of the most extensively researched families of biocompatible materials. They are degradable under physiological conditions and have high applicability in general biomedical engineering, with cross-linked PCL networks being particularly useful for tissue engineering. In this study, we used the optimized potentials for liquid simulations (OPLS) force field, which is well suited for describing intermolecular interactions in biomolecules, and the class II polymer consistent force field (PCFF) to investigate the properties of telechelic PCL with diacrylates as reactive functionalities on its end groups.

View Article and Find Full Text PDF

Professional divers exposed to ambient pressures above 11 bar develop the high pressure neurological syndrome (HPNS), manifesting as central nervous system (CNS) hyperexcitability, motor disturbances, sensory impairment, and cognitive deficits. The glutamate-type N-methyl-D-aspartate receptor (NMDAR) has been implicated in the CNS hyperexcitability of HPNS. NMDARs containing different subunits exhibited varying degrees of increased/decreased current at high pressure.

View Article and Find Full Text PDF

Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions.

View Article and Find Full Text PDF

This paper presents a study of protein adsorption and denaturation using coarse-grained Monte Carlo simulations with simulated annealing. Intermolecular interactions are modeled using the Miyazawa-Jernigan (MJ) knowledge-based potential for an implicit solvent. Three different hydrophobicity scales are tested for adsorption of fibronectin on a hydrophobic surface.

View Article and Find Full Text PDF

A coarse-grained Monte Carlo simulation is used to study thermal denaturation of small proteins in an infinitely dilute solution and adsorbed on a flat hydrophobic surface. Intermolecular interactions are modeled using the Miyazawa-Jernigan (MJ) knowledge-based potential for implicit solvent with the BULDG hydrophobicity scale. We analyze the thermal behavior of lysozyme for its prevalence of α-helices, fibronectin for its prevalence of β-sheets, and a short single helical peptide.

View Article and Find Full Text PDF

Two-dimensional mean-field lattice theory is used to model immobilization and stabilization of an enzyme on a hydrophobic surface using grafted polymers. Although the enzyme affords biofunctionality, the grafted polymers stabilize the enzyme and impart biocompatibility. The protein is modeled as a compact hydrophobic-polar polymer, designed to have a specific bulk conformation reproducing the catalytic cleft of natural enzymes.

View Article and Find Full Text PDF

We introduce a two-dimensional lattice model of immobilization and stabilization of proteinlike polymers using grafted polymers. The protein is designed to have a specific bulk conformation reproducing a catalytic cleft of natural enzymes. Our model predicts a first order denaturing adsorption transition of free proteins.

View Article and Find Full Text PDF