Face masks, recently adopted to reduce the spread of COVID-19, have had the unintended consequence of increasing the difficulty of face recognition. In security applications, face recognition algorithms are used to identify individuals and present results for human review. This combination of human and algorithm capabilities, known as human-algorithm teaming, is intended to improve total system performance.
View Article and Find Full Text PDFIn face recognition applications, humans often team with algorithms, reviewing algorithm results to make an identity decision. However, few studies have explicitly measured how algorithms influence human face matching performance. One study that did examine this interaction found a concerning deterioration of human accuracy in the presence of algorithm errors.
View Article and Find Full Text PDFHemodynamic recordings from visual cortex contain powerful endogenous task-related responses that may reflect task-related arousal, or "task engagement" distinct from attention. We tested this hypothesis with hemodynamic measurements (intrinsic-signal optical imaging) from monkey primary visual cortex (V1) while the animals' engagement in a periodic fixation task over several hours was varied through reward size and as animals took breaks. With higher rewards, animals appeared more task-engaged; task-related responses were more temporally precise at the task period (approximately 10-20 seconds) and modestly stronger.
View Article and Find Full Text PDFSampling regulates stimulus intensity and temporal dynamics at the sense organ. Despite variations in sampling behavior, animals must make veridical perceptual judgments about external stimuli. In olfaction, odor sampling varies with respiration, which influences neural responses at the olfactory periphery.
View Article and Find Full Text PDFTask-related hemodynamic responses contribute prominently to functional magnetic resonance imaging (fMRI) recordings. They reflect behaviorally important brain states, such as arousal and attention, and can dominate stimulus-evoked responses, yet they remain poorly understood. To help characterize these responses, we present a method for parametrically estimating both stimulus-evoked and task-related components of hemodynamic responses from subjects engaged in temporally predictable tasks.
View Article and Find Full Text PDFStimulus intensity is a fundamental perceptual feature in all sensory systems. In olfaction, perceived odor intensity depends on at least two variables: odor concentration; and duration of the odor exposure or adaptation. To examine how neural activity at early stages of the olfactory system represents features relevant to intensity perception, we studied the responses of mitral/tufted cells (MTCs) while manipulating odor concentration and exposure duration.
View Article and Find Full Text PDFFront Behav Neurosci
December 2014
During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5-10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings.
View Article and Find Full Text PDFThe implicit goal of functional magnetic resonance imaging is to infer local neural activity. There is considerable debate, however, as to whether imaging correlates most linearly with local spiking or some local field potential (LFP) measurement. Through simultaneous neuroimaging (intrinsic-signal optical imaging) and electrode recordings from alert, task-engaged macaque monkeys, we showed previously that local electrophysiology correlates with only a specific stimulus-related imaging component.
View Article and Find Full Text PDFHumans and laboratory animals are thought to discriminate sensory objects using elemental perceptual features computed by neural circuits in the brain. However, it is often difficult to identify the perceptual features that animals use to make specific comparisons. In olfaction, changes in the concentration of a given odor lead to discriminable changes in both its perceived quality and intensity.
View Article and Find Full Text PDFNeuroimaging (for example, functional magnetic resonance imaging) signals are taken as a uniform proxy for local neural activity. By simultaneously recording electrode and neuroimaging (intrinsic optical imaging) signals in alert, task-engaged macaque visual cortex, we recently observed a large anticipatory trial-related neuroimaging signal that was poorly related to local spiking or field potentials. We used these same techniques to study the interactions of this trial-related signal with stimulus-evoked responses over the full range of stimulus intensities, including total darkness.
View Article and Find Full Text PDFThere is growing evidence that functional brain images in alert task-engaged subjects contain task-related but stimulus-independent signals in addition to stimulus-evoked responses. It is important to separate these different components when analyzing the neuroimaging signal. Using intrinsic-signal optical imaging combined with electrophysiology we had earlier reported a particular 'trial-related signal' in the primary visual cortex (V1) of alert monkeys performing periodic fixation tasks.
View Article and Find Full Text PDFAn examination of the micro-organization of visual cortex using two-photon calcium imaging provides a new level of insight into retinotopic maps, finding that retinotopy is scrambled on fine scales in mouse primary visual cortex.
View Article and Find Full Text PDFHere we address two recent commentaries on our finding of an anticipatory trial-related signal that could not be predicted by concurrent electrode recordings. In addition, we offer a broad discussion regarding what our findings do and do not say about local neural activity underlying imaging signals.
View Article and Find Full Text PDFFlavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovascular coupling, hemodynamic signals are known to spread beyond the locus of metabolic activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2009
In functional brain imaging there is controversy over which hemodynamic signal best represents neural activity. Intrinsic signal optical imaging (ISOI) suggests that the best signal is the early darkening observed at wavelengths absorbed preferentially by deoxyhemoglobin (HbR). It is assumed that this darkening or "initial dip" reports local conversion of oxyhemoglobin (HbO) to HbR, i.
View Article and Find Full Text PDFHaemodynamic signals underlying functional brain imaging (for example, functional magnetic resonance imaging (fMRI)) are assumed to reflect metabolic demand generated by local neuronal activity, with equal increases in haemodynamic signal implying equal increases in the underlying neuronal activity. Few studies have compared neuronal and haemodynamic signals in alert animals to test for this assumed correspondence. Here we present evidence that brings this assumption into question.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
July 2006
When asked to recall the words from a just-presented target list, subjects occasionally recall words that were not on the list. These intrusions either appeared on earlier lists (prior-list intrusions, or PLIs) or had not appeared over the course of the experiment (extra-list intrusions). The authors examined the factors that elicit PLIs in free recall.
View Article and Find Full Text PDFMonkeys demonstrate improved contrast sensitivity at the goal of a planned memory-guided saccade (Science 299:81-86, 2003). Such perceptual improvements have been ascribed to an endogenous attentional advantage induced by the saccade plan. Speeded reaction times have also been used as evidence for attention.
View Article and Find Full Text PDFWe present an extension of the search of associative memory (SAM) model that simulates the effects of both prior semantic knowledge and prior episodic experience on episodic free recall. The model incorporates a memory store for preexisting semantic associations, a contextual drift mechanism, a memory search mechanism that uses both episodic and semantic associations, and a large lexicon including both words from prior lists and unpresented words. These features enabled the model to successfully account for the effects of prior semantic knowledge and prior episodic learning on the pattern of correct recalls and intrusions observed in free recall experiments.
View Article and Find Full Text PDF